
S i m o n M o n k

micro:bit for
mad scientists
micro:bit for

mad scientists
30 Clever Coding and Electronics

Projects for Kids

AGES 10+

SHELVE IN
: COM

PUTERS/ELECTRONICS

$24.95 ($33.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

“ I L I E F LAT .”

Th is book uses a layflat b ind ing that won't snap shut.

The BBC micro:bit is a tiny, inexpensive,
and surprisingly powerful computer that
you can use to build cool things and experi-
ment with code.

The 30 simple projects and experiments
in this book will show you how to use the
micro:bit to build a secret science lab—
complete with robots, door alarms, lie detec-
tors, and more—as you learn basic coding
and electronics skills.

Here are just some of the projects you’ll
build:
 A light-controlled guitar you can play just

by waving your hand
 A working lie detector
 A self-watering plant care system
 A two-wheeled robot
 A talking robotic head with moving eyes
 A door alarm made with magnets

Learn to code like a Mad Scientist!

ABOUT THE AUTHOR

Simon Monk writes frequently about
electronics for makers. He is the author
of Raspberry Pi Cookbook, Programming
Arduino, and Hacking Electronics. He is
also the co-author of Practical Electronics
for Inventors and wrote Minecraft Mastery
with his son, Matthew Monk.

Build Your OWN
Secret Laboratory!

Build Your OWN
Secret Laboratory!

30 Coding and
Electronics Projects

30 Coding and
Electronics Projects

Covers
MicroPython and
MakeCode Blocks

M
o

n
k

m
ic

r
o

:b
it

 �f
o

r
 m

a
d

 s
c

ie
n

t
is

t
s

m
ic

r
o

:b
it

 �f
o

r
 m

a
d

 s
c

ie
n

t
is

t
s

Micro:bit for
Mad Scientists

Micro:bit for
Mad Scientists

30 Clever Coding and
Electronics Projects for Kids

By Simon Monk

San Francisco

MICRO:BIT FOR MAD SCIENTISTS. Copyright © 2019 by Simon Monk.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-974-4
ISBN-13: 978-1-59327-974-5

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover Illustration: Josh Ellingson
Illustrator: Miran Lipovača
Interior Design: Beth Middleworth
Developmental Editor: Liz Chadwick
Technical Reviewer: David Whale
Copyeditor: Paula Fleming
Compositor: Happenstance Type-O-Rama
Proofreader: Abby Franklin

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Monk, Simon, author.
Title: Micro:bit for mad scientists : 30 clever coding and electronics projects for kids / Simon Monk.
Other titles: Microbit for mad scientists
Description: San Francisco : No Starch Press, Inc., [2019] | Includes index.
Identifiers: LCCN 2019015785 (print) | LCCN 2019021782 (ebook) | ISBN
 9781593279752 (epub) | ISBN 1593279752 (epub) | ISBN 9781593279745 (print)
 | ISBN 1593279744 (print)
Subjects: LCSH: Micro:bit--Juvenile literature. | Single-board
 computers--Juvenile literature. | Electronics--Data processing--Juvenile
 literature. | Python (Computer program language)--Juvenile literature. |
 JavaScript (Computer program language)--Juvenile literature.
Classification: LCC QA76.8.M47 (ebook) | LCC QA76.8.M47 M66 2019 (print) |
 DDC 004.16--dc23
LC record available at https://lccn.loc.gov/2019015785

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

“Micro:bit,” the micro:bit logo and the micro:bit device visual design are trademarks or registered
trademarks of the Micro:bit Educational Foundation, which does not authorize or endorse this book.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-
tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

This book is dedicated to Gerard Paris.
A companion to my mother and a friend

and inspiration to all that know him.

About the Author
Simon Monk has a degree in Cybernetics and Computer
Science and a PhD in Software Engineering. After spending
many years in software and co-founding the mobile software
company Momote, he now divides his time between writing
books about electronics and programming and helping to run
Monk Makes (https://www.monkmakes.com/), a business he
started with his wife Linda, where he designs electronic kits
and accessories for the BBC micro:bit and Raspberry Pi.

You can follow Simon on Twitter (@simonmonk2) and find
out more about his books at https://www.simonmonk.org/.

About the
Technical Reviewer
David Whale is an embedded software engineer and a STEM
Ambassador who volunteers in schools in the UK. He has been
an active member of both the Raspberry Pi and micro:bit com-
munities since their inception. He contributed to the original
BBC micro:bit project, advising The IET and BBC and helping
to write and deliver resources and training to teachers around
the country. He wrote a highly successful children’s coding book,
Adventures in Minecraft (Wiley), and edits a wide range of tech
books and magazine articles for well-known authors. David is
on a mission to inspire the next generation of engineers and sci-
entists—our future will soon be in their hands.

BRIEF CONTENTS

Acknowledgments . xvii

Introduction . xix

Chapter 1: Getting Started . 1

Chapter 2: Super Sonic . 39

Chapter 3: Luminous Light . 61

Chapter 4: Magical Magnetism . 85

Chapter 5: Amazing Acceleration . 105

Chapter 6: Mad Movement . 131

Chapter 7: Time Travel . 165

Chapter 8: Mad Scientist Mind Games . . 183

Chapter 9: Environmental Madness . . 199

Chapter 10: Radio Activity . 225

Appendix: Get the Parts . 245

CONTENTS IN DETAIL

Acknowledgments	 xvii

Introduction	 xix
About This Book . . xx

Experiments . xxi
Projects . xxi

Code and Resources . xxii

1
Getting Started	 1
A Tour of the Micro:bit . 2

The Top . 2
The Bottom . 4
Power and the Micro:bit . . 4
Connecting Electronics with Input/Output Pins 7
Built-In Peripherals . 9

Hardware Essentials . 10
Programming the Micro:bit . 11

Connecting your Micro:bit . 11
Programming with Blocks: Hello World . 12
Programming with MicroPython: Hello World 19

Programming Concepts . 25
Variables . . 25
Arithmetic . . 27
if Blocks . 29
Strings . 30
Arrays and Lists . . 32
Programming Wrap-Up . 33

Downloading the Code . 34
Downloading the Blocks Code . 34
Downloading the MicroPython Code . . 35

Summary . 37

xii    Contents in Detail

2
Super Sonic	 39
Connecting a Loudspeaker to a Micro:bit . 40

The Quiet Method: Headphones . . 40
The Ghetto Blaster Method: Speaker . 42

Experiment 1: Generating Sounds . 43
What You’ll Need . 43
Construction . 43
Code . 44
Things to Try . 45
How It Works: Frequency and Sound . 45

Experiment 2: It Speaks! . 47
What You’ll Need . 47
Construction . 47
Code . 48

Project: Musical Doorbell . . 48
What You’ll Need . 49
Construction . 50
Code . 51
Things to Try . 53

Project: Shout-O-Meter . 54
What You’ll Need . 55
Construction . 55
Code . 56
How It Works: Microphone Output . . 58

Summary . 59

3
Luminous Light	 61
Experiment 3: Sensing Light . . 62

What You’ll Need . 62
Construction . 62
Code . 62
How It Works . 63

Project: Automatic Night-Light . . 63
What You’ll Need . 64
Construction . 64
Code . 65

Project: Light Guitar . 66
What You’ll Need . 66
Construction . 67
Code . 71

Contents in Detail   xiii

Project: Infinity Mirror . 73
What You’ll Need . 73
Construction . 75
Code . 81
How It Works . 83

Summary . 84

4
Magical Magnetism	 85
Project: Compass . 86

What You’ll Need . 86
Construction . 87
Code . 89
Things to Try . 92
How It Works: The Earth’s Magnetic Field . 92

Experiment 4: Measuring Magnetic Fields . 93
What You’ll Need . 93
Construction . 94
Code . 97
Things to Try . 98
How It Works: The Strength of Magnets . 99

Project: Magnetic Door Alarm . . 99
What You’ll Need . 100
Construction . 101
Code . 102
Things to Try . 103

Summary . 104

5
Amazing Acceleration	 105
Experiment 5: Gestures . . 106

What You’ll Need . 106
Construction . 107
Code . 107
Things to Try . 109
How It Works: Force, Acceleration, and Gravity 109

Experiment 6: Real-Time Acceleration Plotting . 112
What You’ll Need . 112
Construction . 112
Code . 114
How It Works: Calculating Net Acceleration 114

xiv    Contents in Detail

Project: Toothbrushing Monitor . 116
What You’ll Need . 117
Construction . 117
Code . 118
Things to Try . 121

Experiment 7: Logging Acceleration to a File . 121
What You’ll Need . 122
Construction . 122
Code . 125
Things to Try . 126

Project: Acceleration Display . 127
What You’ll Need . 128
Construction . 128
Code . 129

Summary . 130

6
Mad Movement	 131
Experiment 8: Making a Servomotor Move . 132

What You’ll Need . 133
Construction . 133
Code . 135
How It Works: Servomotors and Pulses . 137

Project: Animatronic Head (Mike the Micro:bit Robot) 139
What You’ll Need . 140
Construction . 141
Code . 151
Things to Try . 155

Project: Robot Rover . . 155
What You’ll Need . 156
Construction . 157
How It Works: Motors and the Flow of Electricity 163

Summary . 164

7
Time Travel	 165
Experiment 9: Keeping Time . . 166

What You’ll Need . 167
Construction . 167
Code . 168
How It Works: Keeping Time . 169

Contents in Detail   xv

Project: Binary Clock . 169
How to Read the Binary Clock . 171
What You’ll Need . 171
Construction . 172
Code . 172
How It Works: Telling the Time in Binary . 176

Project: Talking Clock . 178
What You’ll Need . 178
Construction . 179
Code . 179
How It Works: Teaching the Micro:bit to Speak 182

Summary . 182

8
Mad Scientist Mind Games	 183
Experiment 10: How Fast Are Your Nerves? . 184

What You’ll Need . 185
Construction . 185
Testing Your Nervous System . . 186
Code . 188
Things to Try . 191
How It Works: Measuring Your Reaction Time 191

Project: Lie Detector . 193
What You’ll Need . 194
Construction . 194
Code . 195
How It Works: Detecting Lies Through

Sweat, Voltage, and Resistance . . 197
Summary . 198

9
Environmental Madness	 199
Experiment 11: Measuring Temperature . 200

What You’ll Need . 200
Construction . 201
Code . 202
How It Works: Why Does a Processor Heat Up? 203

Project: Temperature and Light Logger . 204
What You’ll Need . 205
Construction . 206
Code . 208
How It Works: Sensors . 210

xvi    Contents in Detail

Project: Automatic Plant Waterer . . 212
What You’ll Need . 213
Construction . 215
Code . 218
Things to Try . 222
How It Works: Measuring Soil Dampness . 222

Summary . 223

10
Radio Activity	 225
Experiment 12: Finding the Radio Range . 226

What You’ll Need . 226
Construction . 227
Code . 228
How It Works: Radio Signals . . 231

Project: Wireless Doorbell . 231
What You’ll Need . 232
Construction . 233
Code . 233
Things to Try . 235
How It Works: Sending and Receiving . 235

Project: Micro:bit-Controlled Rover . 236
What You’ll Need . 236
Construction . 237
Code . 238
Things to Try . 241
How It Works: Motor Driver Blocks . 241

Summary . 243

Appendix: Get the Parts	 245
Useful Tools . 246
Common Parts . 247
Powering Your Micro:bit . 248
Micro:bit Accessories . 249
Miscellaneous . 250

ACKNOWLEDGMENTS
I am very grateful to David Whale for finding the time to carry
out the technical review of this book. It was a pleasure to work
with him. I’m also very grateful to the help and support of the
Micro:bit Foundation and to the micro:bit community, who have
helped out more than once on technical issues.

I’d also like to thank Liz, Janelle, Bill, and everyone
at No Starch Press and of course the very talented Miran
Lipovača for the wonderful and amusing illustrations.

INTRODUCTION

ince the release of the BBC micro:bit in
2016, millions of these devices have been
distributed. They’re enjoyed by both

kids and adults all over the world. The
micro:bit was designed as an easy way to teach kids
programming skills. One of its great advantages
is that you don’t need anything more than a USB
cable and a computer to start using it. Also, once
programmed, it can be disconnected from a power
source and run on batteries.

INTRODUCTION xx

The micro:bit has a small LED display as well as sensors
for light, movement, and magnetic fields, so it has everything
you need to make interesting projects. When you’re ready, you
can easily connect things like motors, sensors, and loudspeak-
ers using alligator clips—there’s no need for soldering. In other
words, your micro:bit can be the brain for lots of projects and
inventions.

About This Book
In these pages, you’ll find a variety of experiments and projects.
The experiments show you how things work, and then in the
projects, you’ll use that knowledge to make something funky.

The book is divided into 10 chapters. Chapter 1 tells
you all you need to know about connecting and using your
micro:bit. You’ll use this information in all the experiments
and projects in this book. Each of the following chapters deals
with a specific topic, such as light, sound, and movement.
There are lots of fun and useful things you can do with your
micro:bit!

Introduction xxi

Experiments
Here’s a list of the experiments in the book:

Generating sounds  Learn to make your micro:bit play
musical notes and other sounds.
It speaks!   Teach your micro:bit to speak!
Sensing light  Use the built-in light detector.
Measuring magnetic fields  Use the built-in magnom-
eter to sense magnets.
Gestures  Use the micro:bit’s gesture recognition soft-
ware to have the device do different things when you
shake, drop, or throw it.
Real-time acceleration plotting  Learn about Mu’s
data visualization feature.
Logging acceleration to a file  Record the data
detected by the micro:bit so you can look at it later.
Making a servomotor move  Experiment with motors!
Keeping time  Learn how the micro:bit tells time.
How fast are your nerves?   Test your reaction time.
Measuring temperature  Use the micro:bit tempera-
ture sensor to build a thermometer.
Finding the radio range  Learn how to use the
micro:bit for radio communication.

Projects
Here’s a list of the projects in this book:

Musical doorbell  Plays a tune of your choice when
pressed
Shout-o-meter  Detects a sound and shows how loud
it is
Automatic night-light  Turns on by itself when the
room gets dark
Light guitar  Makes music when you wave your hands
over the micro:bit’s LEDs

INTRODUCTION xxii

Infinity mirror  Creates the illusion of infinite depth
using light
Compass  A real working compass!
Magnetic door alarm  Goes off when you open a door,
separating a magnet from the micro:bit
Toothbrushing monitor  Measures your brushstrokes
to make sure you’re keeping your pearly whites in good
order
Acceleration display  A meter that shows how quickly
the micro:bit is accelerating
Animatronic head  A robotic head that has moving
eyes and a talking mouth
Robot rover  A two-wheeled micro:bit robot!
Binary clock  Tells time using LEDs
Talking clock  Announces the time every hour and
whenever you press a button
Lie detector  Measures electrical currents in the skin
to tell whether someone is lying
Temperature and light logger  Automatically keeps a
record of light and temperature levels
Automatic plant waterer  Waters your plants when-
ever it senses that the soil is too dry (Never again kill a
plant!)
Wireless doorbell  A wireless upgrade to the doorbell
project that uses radio waves
Micro:bit-controlled rover  A wireless version of the
roving robot that receives your instructions via radio

Code and Resources
The two most popular computer languages for programming
the micro:bit are Makecode Blocks (referred to as just Blocks
in this book) and the MicroPython programming language.

Wherever possible, I’ve provided programs for the projects
and experiments in both Blocks and MicroPython. This means
you don’t have to type in the code yourself—unless you want to.

Introduction xxiii

You can find all the code for the activities in this book at
the companion GitHub page: https://github.com/simonmonk/
mbms/. I provide full instructions for accessing and using the
code in Chapter 1.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

1
GETTING STARTED

his chapter will get you started with your
BBC micro:bit. It will also set the stage
for the experiments and projects you’ll

find in the following chapters. I’ll give our
Mad Scientist (that’s you!) some ideas about what
to do with your micro:bit, and I’ll help you start
programming your micro:bit. You’ll learn how to use
Blocks code and MicroPython.

CHAPTER 12

Mad Scientists are generally too busy and distracted to
type in huge amounts of code, so all the code used in this book
is available to download. This chapter explains how to get and
use the code.

A Tour of the micro:bit
Let’s take a quick look at the micro:bit and what’s on it.

The Top
Figure 1-1 shows the top of a micro:bit.

Micro USB socket

Button BButton A

LED display

Connectors

Figure 1-1: The micro:bit

At the top of the board is a micro USB socket, which
you’ll use to connect the micro:bit to a computer. You’ll write
programs for your micro:bit on a computer, so you’ll have to
transfer the programs to the micro:bit using a USB connec-
tion. The USB socket can also power up the micro:bit.

Getting Started 3

On the left and right are two buttons labeled A and B,
respectively. We can program these buttons to trigger some
action, like flashing an image on the LEDs or making a door-
bell sound.

Between the two buttons is a grid of 25 LEDs arranged
as 5 rows and 5 columns. This is the micro:bit’s display. Even
though it has only 25 LEDs, this display can show scrolling
text messages, small images, patterns—a whole load of things!

At the bottom edge of the micro:bit is a gold-plated (yes,
real gold!) strip called the edge connector. This strip has five
holes labeled 0, 1, 2, 3V, and GND. These large connectors
allow you to connect things to the micro:bit using alligator
clips. For example, you might connect a speaker to get the
micro:bit to make sound or a motor to get it to move. The
much smaller connectors, the slits between the holes, can
be used only with a special adapter. In this book, we’ll use
the large connectors for everything except the two robot
projects, which require an adapter to connect to a motor
controller.

CHAPTER 14

The Bottom
Now let’s turn the micro:bit over and see what we have on the
underside (Figure 1-2).

Micro USB
connector

Reset
button

Battery
connector

Figure 1-2: The micro:bit’s underside, version 1.3B (left) and 1.5 (right)

At the time of writing, there are two versions of the
micro:bit in circulation. Both work in the same way, and
it doesn’t matter which version you have for this book. The
latest version (1.5) just has a slightly simplified design. You
can see the difference in the bottom left of the boards shown
in Figure 1-2.

The leftmost connector is the micro USB connector. Immedi-
ately to the right of that is a push switch. This is the micro:bit’s
reset button. Pressing this button will cause the micro:bit to
restart whatever program is installed on it. To the right of
the reset button is the battery connector, which allows you
to connect a 3V battery pack to your micro:bit.

Now we’ll take a closer look at each section, starting with
how to power your micro:bit.

Power and the Micro:bit
You can power the micro:bit through the USB connector or
with batteries, depending what you want to do with it.

Getting Started 5

Using USB
The USB connection will provide the micro:bit with 5V (5 volts)
of power when you plug it into your computer. However, the
micro:bit needs only 3.3V, not 5V, and too much voltage would
damage the micro:bit. Therefore, it has a USB interface chip
that converts this 5V to the 3.3V that the micro:bit expects.

When the micro:bit is plugged in via USB, you can use
the 3V connector on the edge connector to provide power to
low-current electronic devices, like external LEDs or speakers
designed to work with the micro:bit.

NOTE 	 The reason this connection is labeled 3V rather
than 3.3V is partly that there isn’t much space for another
number but also that protection circuitry reduces the 3.3V to
a voltage close to 3V.

The connection labeled GND is the ground or 0V power
connection. When you power your micro:bit, current flows out
of the 3V connection, and it needs to return to the micro:bit in
order to complete the circuit—the GND connection is where
the current returns.

Using Batteries
Once you’ve programmed your micro:bit, you may want to
move it away from your computer, in which case you’ll need
batteries. You can use a AAA battery pack, like the one shown
in Figure 1-3. Simply plug the ends of the battery pack wires
into the 3V socket on the underside of the micro:bit.

Figure 1-3: Battery packs for the micro:bit

CHAPTER 16

The appendix lists some places you can buy these battery
packs. A built-in switch is useful because you can power the
micro:bit down without unplugging the battery pack, a task
that can be a bit tricky.

Don’t use rechargeable AAA batteries because their
voltage is generally too low to power a micro:bit. These bat-
teries can also allow dangerously high currents if the flow of
electricity is accidentally short-circuited. If you want to use
rechargeable batteries, one option is a USB battery backup
like the one shown on the left of Figure 1-4.

Figure 1-4: Using rechargeable batteries with the micro:bit

These rechargeable batteries allow you to power your
micro:bit through its USB port. The lower-capacity, cheaper
backup batteries are often more suitable to power a micro:bit
than are the more expensive versions. The micro:bit uses so
little current that these more advanced units, which tend to
turn off if they think the battery hasn’t been used in a while,
can be fooled into thinking nothing is connected.

The item on the right of Figure 1-4 is the Monk Makes
Charger for micro:bit. This uses a lithium polymer (LiPo) bat-
tery that automatically recharges whenever you connect the
charger to your computer with a USB cable. When you want to

Getting Started 7

run the micro:bit on batteries, you just unplug the USB cable
to the charger.

You can find out more about the options for powering your
micro:bit in the appendix.

WARNING	 The earliest versions of the micro:bit were
susceptible to damage when used with USB batteries and
power supplies. If you have any board other than a V1.3B or
V1.5, you should avoid using any power supply except your
computer USB port or a 3V battery pack.

T he early micro:bits don’t have a version number on them.
Flip your micro:bit over and look at the bottom right corner on
the underside near connector 0. If it says V1.3B or V1.5, then
using USB battery packs and power supplies will be fine. If
you don’t see a version identifier here, don’t use these power
supplies.

In either case, steer away from power supplies and USB
batteries described as high power.

You can read the micro:bit Foundation’s full safety advice
at https://microbit.org/guide/safety-advice/.

Connecting Electronics with Input/Output Pins
One especially fun thing about the micro:bit is that you can
use the connections to attach electronic gadgetry of your own
creation. In this book, you’ll build projects that use these con-
nectors to control motors, lights, and a loudspeaker. You’ll also
use them as inputs to gather data from sensors that measure
light, sound, and temperature.

The 3V and GND connections are there to supply power.
The connections labeled 0, 1, and 2 are usually referred to as
input/output pins, and you’ll be attaching electronics to these.

NOTE 	 You might wonder why we call them pins when
they look nothing like pins. The term pin comes from the chip
on the circuit board that the micro:bit connects to. The chip
does have a pin—a tiny leg-like connection—for each of these
three pins.

https://microbit.org/guide/safety-advice/

CHAPTER 18

The pins 0, 1, and 2 can be used for:

XX Digital output—turning an external LED on and off, for
example

XX Analog output—controlling the brightness of an LED, for
example

XX Pulse generation—to control a servo motor, for example

XX Digital input—to detect when an external button has been
pressed, for example

XX Analog input—to measure temperature using an analog
temperature sensor, for example

XX Touch input—to detect that you have touched the pin or a
wire connected to a pin

Digital and Analog Inputs
When you use a pin as a digital output, you can write com-
mands in your programs to turn the output on (set it to 3V) or
turn it off (set it to 0V), but only on or off—nothing in between.
This is also the case with digital inputs: they can only ever
be on or off. When your program code reads a digital input, if
the voltage at the input is nearer 3V than 0V, then the input
counts as being on; otherwise, it’s off.

Analog inputs, however, can be somewhere between on and
off. Analog inputs on a micro:bit can be any value between 0
and 1,023, depending on the voltage at the pin.

Making an Analog Signal: Pulse Width
Modulation
A micro:bit, like all other electronics, can work only with
digital on or off signals. To get analog signals between 0 and
3V, electronic devices simulate the analog signal by provid-
ing a rapid series of digital pulses. The longer the pulse, the
more power is delivered to whatever is connected to the analog
output. This is known as pulse width modulation, or PWM.
Figure 1-5 shows PWM in action.

Getting Started 9

90%

50%

5%

0V

0V

0V

3V

3V

3V

Time

Output pin
voltage

Output pin
voltage

Output pin
voltage

Figure 1-5: Analog outputs on the micro:bit delivering different amounts
of power

If the output is connected to an LED and the pulse is at
3V only 5 percent of the time, the LED will appear to glow
dimly. In contrast, if the pulse is at 3V for 90 percent of the
time, the LED will appear to be at almost full brightness.

Interestingly, in both cases, the LED would actually be
flashing at 50 times a second, but the human eye can’t see a
light flash that quickly. Instead, we just register a relatively
dim or bright light.

If the three pins 0, 1, and 2 are not enough for your project,
you can use an adapter to access the many pins between the
three numbered ones.

Built-In Peripherals
The writing on the underside of the micro:bit gives us some
clues about other things the micro:bit can do. Two areas at the
bottom left are labeled compass and accelerometer.

CHAPTER 110

The compass is actually a magnetometer, meaning it
measures the strength of magnetic fields. You can use it as
a compass, but you can also use it to detect the presence of
magnets.

The accelerometer measures forces acting on the acceler-
ometer chip. Because gravity is a constant force pulling down
on everything, you can, by measuring the forces acting in dif-
ferent directions, use the accelerometer to detect when the
micro:bit is being tilted and by how much, as well as when it
is being shaken or in free fall.

Also on the underside, you will see the words BLE Antenna.
The micro:bit includes BLE (Bluetooth Low Energy) hardware
that allows your micro:bit to communicate wirelessly with other
micro:bits or Bluetooth-enabled phones.

Note that the technology for micro:bit-to-micro:bit com-
munication is not actually Bluetooth; it just uses the same
frequency. Chapter 10 is devoted to this feature of the
micro:bit.

Hardware Essentials
There are a few things you’ll need for nearly all the experi-
ments and projects in this book. They include:

Micro:bit

Micro USB cable  To connect your micro:bit to a com-
puter (Make sure this is a standard micro USB data
cable and not a charging cable, which lacks the necessary
connections for communication. You can’t use a charging
cable to load programs onto the micro:bit.)
Alligator clip cables  Ideally, these should be no longer
than 4 to 5 inches to avoid getting tangled up.
3V AAA battery pack with two AAA batteries

USB power supply  You’ll need this only for some
projects. (See earlier warning.)

Each project or experiment will have a list of all the items
you need, and the appendix at the end of the book gives more
information about how to acquire these supplies.

Getting Started 11

This book tries to keep project construction straight-
forward and, apart from the roving robot in Chapter 6, no
soldering is required. For most projects, you just need alli-
gator clip cables to connect things together. When making
connections using alligator clips, it’s best to clip the cable in
vertically so the teeth of the clip look like Figure 1-6, as this
makes it much less likely that the cables will come loose.

Figure 1-6: Securely attaching alligator clips

Programming the micro:bit
Mad Scientists aren’t known for their patience, so let’s make
our micro:bit do something. First, we’ll program our micro:bit.

One of the nice things about a micro:bit is that to get
started with it, you just need a USB cable and a computer
with a browser and internet connection. You can use a com-
puter running on Windows, macOS, or Linux. As long as
your device has a modern browser, such as Chrome, it will
work fine.

We’ll first connect up the micro:bit. Then we’ll make a
small program using two methods: the drag-and-drop Blocks
code and MicroPython, which you need to type out.

Connecting your Micro:bit
Start by connecting your micro:bit to your computer with
a micro USB cable. Nearly all micro USB cables will work
fine, but remember that charging-only cables don’t have the

CHAPTER 112

necessary data connections and won’t work. If you have trouble
programming your micro:bit using the following instructions,
try using a different USB cable.

Once you connect your micro:bit, your operating system
should react as if you’d just plugged in a USB flash drive. To
transfer a program onto the micro:bit, find the micro:bit in
your filesystem just like you’d find a flash drive or some other
plug-in. Then copy a file called a hex file into the micro:bit
folder icon, and, hey presto!, your program will be installed.
Loading a program onto your micro:bit is also known as
flashing.

Let’s make a hex file and flash it to our micro:bit.

Programming with Blocks: Hello World
You can build programs for the micro:bit through the
micro:bit website without downloading any software. We’ll
make a program that scrolls some text across the LED dis-
play on the micro:bit. Open your browser and navigate to
https://makecode.microbit.org, and you should see a window
something like Figure 1-7.

Virtual
micro:bit Blocks categories

Figure 1-7: The https://makecode.microbit.org web page

This is the editor that you build programs in. On the left
is an image of a micro:bit that works like a virtual micro:bit,
running whatever programs you write.

https://makecode.microbit.org
https://makecode.microbit.org

Getting Started 13

The section in the middle is a list of categories such as
Basic, Input, and Music. Within each of these categories, you’ll
find blocks that you can drag onto the working area on the
right. Each block is an instruction for your micro:bit. By drag-
ging these blocks around and connecting them, you’ll write
code using the Blocks language.

You’ll notice that when you open the editor, there are
already two blocks in the editing section: on start and
forever. Any blocks inside the on start block will run once
when the micro:bit first powers up, when a new program is
uploaded, or when the micro:bit resets because you pressed
the reset button. Whatever blocks are inside the forever block
will run over and over again, until you stop the program.

For our first program, we don’t need the forever block, so
select it and press delete to remove it from your program.
Next, you need to add a show string block to your program—
string is programming speak for text. To do this, click the
Basic category, drag the show string block into the program-
ming area, and place it inside the on start block, as shown in
Figure 1-8. If you have sound on your computer, you will hear
a satisfying click as the blocks snap together.

Now click inside the text bubble and type Hello World.
You can also type different text—whatever you want to
see displayed.

Figure 1-8: Blocks code for displaying Hello World

As soon as you drag the show string block into place, the vir-
tual micro:bit on the left of the display should scroll your message
across its display to show you what your program does.

Now let’s transfer your program to the real micro:bit. Con-
nect your micro:bit using a USB cable and click Download at
the bottom left of the web page.

CHAPTER 114

This will download the file from the editor in the same
way as any other file that you might download from the
internet. Where the file is saved will depend on your oper-
ating system and browser, but usually it’s in a folder called
Downloads. Find this folder, click into it, and you should
find a file called microbit.hex. Using the File Manager
(or Finder on a Mac) select this file and drag it onto the
micro:bit where it appears in your filesystem (Figure 1-9).

Figure 1-9: Dragging a file onto your micro:bit

Getting Started 15

As soon as you release your mouse button, the file should
start installing itself onto the micro:bit. You’ll know this is
happening because the LED on the back of the micro:bit will
start blinking. When the blinking ends, the micro:bit will
reset itself and run the program, scrolling the text across
its display. If you miss seeing the message, press the reset
button on the back of the micro:bit to see it again.

Downloading Directly to
your Micro:bit

Most browsers have an option to choose where a file is saved
each time you download one. You can use this feature to down-
load files directly onto your micro:bit. Then you don’t have to
first download and then copy the file.

To set this up in the Chrome browser, go to chrome://
settings/, click Advanced, scroll down to the Downloads,
and enable the option Ask where to save each file before
downloading. That way, next time you click Download in the
editor, you’ll be prompted for a location to save your file to and
can select the micro:bit folder as the destination.

At the time of writing, flashing programs onto your
micro:bit is about to get a whole lot easier for users of
the Chrome browser. You can read about this feature
here: https://support.microbit.org/support/solutions/
articles/19000084059-beta-testing-web-usb.

Adding Graphics
To display our message, we added a show string block to the on
start block. The on start block is a special type of block called
an event block that runs the code connected to it whenever a
particular event happens. In this case, the event is the start of
the program.

https://support.microbit.org/support/solutions/articles/19000084059-beta-­testing-­web-­usb
https://support.microbit.org/support/solutions/articles/19000084059-beta-­testing-­web-­usb

CHAPTER 116

Let’s make our program a bit more complicated by adding a
new event that will detect when button A is pressed. To do this,
click the Input category and drag an on button A pressed block
into the program area. Next, drag a show leds block from the
Basic category into the on button A pressed block. The squares
in the show leds block represent each LED in the LED display.
You can select which LEDs should light up by clicking them
so they turn white. The result should look something like
Figure 1-10.

Figure 1-10: Adding an LED pattern to the program

The show icon block has a number of ready-made LED
images if you want to choose one of those. Click Download
again and copy the new hex file onto your micro:bit. Once the
new program has been uploaded, you can test it by pressing
button A. When you do so, the selected LEDs in the show leds
block should light up on your micro:bit, as in Figure 1-11.

Getting Started 17

Figure 1-11: Displaying an LED pattern on an actual micro:bit

Saving and Sharing
The https://makecode.microbit.org website remembers all your
projects. Give your project a name by entering the name in the
Save area next to the Download button, and your project will be
saved. Whenever you change your program, it should automati-
cally save, but to make sure, you can save manually by clicking
the floppy-disk Save icon. Note that when you click Save, the
hex file will also be downloaded, but you can just click Cancel if
you’re not ready to flash the program onto your micro:bit.

Note that your stored programs are actually kept in your
browser cache, so if you delete your cache, you will lose your
programs.

To switch between programs and start new ones, click
Home at the top of the page.

https://makecode.microbit.org

CHAPTER 118

To publish a program so others can see it, click Share
next to Projects. This will ask you to confirm that you wish to
publish your project. Click Share again, and you’ll see a link
like the one in Figure 1-12.

Figure 1-12: Sharing a project

You can give that URL to anyone, and when they put it in
their browser, they’ll get a copy of your program to use. Note
that because this is just a copy of your program, there’s no
risk that they’ll spoil your original copy of the code.

Finding Blocks
The show string and show leds blocks we’ve used so far were
pretty easy to find, but the Blocks editor contains a lot of
blocks, and it keeps the ones you don’t use as often hidden.
This way, you don’t see a confusing array of choices when you
start out on your micro:bit adventure.

These blocks are hidden in two ways. First, you may have
noticed that when you select one of the block categories, such
as Basic, an item labeled . . . more appears (see Figure 1-13).

Figure 1-13: Extra blocks in the more section

In the case of the Basic category, the more section contains
blocks such as clear screen and show arrow. If you click through
the other categories, you’ll see that they all have a more sec-
tion, some with quite a few extra blocks.

Getting Started 19

Incidentally, hovering your mouse over a block will open a
little information box telling you what the block does. Investing
a little time in getting familiar with the various blocks will give
you exciting ideas about what you can to do with your micro:bit.

The second place to find hidden blocks is in the Advanced
category, just after Math (Figure 1-14). Selecting this category
will reveal a host of other categories containing more advanced
features of the Blocks language, starting with Functions. Again,
spend a little time familiarizing yourself with the blocks. Don’t
worry if it’s not obvious what some of them do. If you’re inter-
ested in a block that does a particular thing, you may find the
search field useful for finding the block you want.

Figure 1-14: The Advanced blocks category

The categories in the Advanced section that you’ll use
frequently are Text and Pins. In some chapters, you’ll also be
using Functions and Arrays.

Programming with MicroPython: Hello World
Blocks code is great for getting started with programming,
because you can accomplish some really impressive things
with just a few blocks. However, many people prefer writing a
program in text rather than dragging blocks around. Typing
lines of text is also more like regular programming.

MicroPython is an implementation of the Python 3 pro-
gramming language that includes everything you need to
program your micro:bit with Python. In fact, many of the

CHAPTER 120

blocks in Blocks code have direct equivalents in MicroPython,
so switching from programming in Blocks to MicroPython is
fairly straightforward. Python is a popular first programming
language and is often taught in schools for that reason.

Downloading the MicroPython Editor
We’ll use the Mu editor app (https://codewith.mu), which
has lots of features. It can be downloaded straight onto your
computer. Mu also lets you flash your program directly to a
micro:bit without having to drag the hex file around. The nice
thing about Mu is that you don’t need internet access to flash
the program once Mu has been downloaded.

Download Mu from https://codewith.mu/#download.
There are several versions of Mu, so it’s important that you
get the right one for your computer. The download page will
offer you different versions for different operating systems. If
you’re a Windows user, download the version under Windows
Installer that’s labeled 64-bit (Figure 1-15). If you’re a macOS
user, there’s just one version.

Figure 1-15: Downloading Mu

Run the installer and accept the license agreement and all
the default options.

The first time you run Mu, it will offer you a choice
of modes. Make sure to select the BBC micro:bit mode
(Figure 1-16).

https://codewith.mu
https://codewith.mu/#download

Getting Started 21

Figure 1-16: Selecting the right version of Mu

Mu will present you with a blank editor window where
you’ll type your first program.

Writing the Program
Let’s give Mu a go! Add the following code in the Mu window:

from microbit import *

display.scroll("Hello World")

It should look something like Figure 1-17.

Figure 1-17: Writing a MicroPython program in Mu

CHAPTER 122

Save the program by clicking Save at the top of the Mu
window. You’ll be prompted to enter a name for your program:
call it hello.py.

Now, with your micro:bit connected to your computer, click
Flash at the top of the Mu window. This should start the pro-
cess of loading the hex file to the micro:bit, just as though you
were dragging over a file produced by the Blocks editor. Once
the flashing is complete, the Hello World message should scroll
across the display.

Let’s take a closer look at the code. Here’s the first line:

from microbit import *

You’ll find this line at the start of pretty much every Micro-
Python micro:bit program, because this is what tells MicroPython
to include all the built-in code that makes it compatible with
the micro:bit’s display and other hardware. This code isn’t auto-
matically included because MicroPython can be used on a lot of
different boards, not just the micro:bit. The line actually means:
from the microbit library, import everything (* means every-
thing). You could also enter import microbit, but then you’d have
to prefix everything with microbit, which is a lot of extra typing.

The only other line of code in our minimal program dis-
plays a message on the display:

display.scroll("Hello World")

This line uses the command display.scroll, which tells the
micro:bit to scroll something across its display. Then you add a
set of parentheses, inside of which we have some text enclosed in
quotation marks. You use parentheses to add extra information
to a command. In this case, the extra information (also called
an argument) is the text you want to display. You also have
to enclose the text in double quotes to show that the program
should treat it as text, not as more programming commands.

If, when you flash the program onto a micro:bit, you see some-
thing other than Hello World (or nothing at all), you probably have
an error in your code. When using a text-based programming
language, you have to be precise in what you type. For example,
misspelling a word such as display or scroll will cause an error
when you run the program. Errors in programming are called

Getting Started 23

bugs. Bugs only show up when the program tries to run on the
micro:bit. If you get any bugs, you can carefully compare the code
you wrote to the code in the book to make sure it all matches. But
there’s another way to find and fix bugs—you can use the REPL.

The REPL
The REPL (Read-Eval-Print-Loop) is a command line interface
to MicroPython on the micro:bit—that is, it’s an area that lets
you send Python commands directly to the micro:bit, without
having to put them into a program first. If you entered the
line 1 + 2 here, the REPL would respond with 3. Similarly, if
MicroPython encounters a problem when it tries to run, it can
report this problem to you in the REPL without you having to
wait for the micro:bit to try to display something.

To experiment with the REPL, let’s deliberately introduce
an error into our program by misspelling scroll so that it only
has one l. Delete an l and click Flash again. The program
will upload despite being faulty, but this time, the micro:bit
display will say: AttributeError: 'MicroBitDisplay' object has
no attribute 'scrol'. It takes a long time to scroll out this
message, so to get a clearer view of it, click the REPL button
at the top of the Mu window and then click the reset button on
the back of your micro:bit. You should then see the error mes-
sage in full in the REPL (bottom of Figure 1-18).

Figure 1-18: Catching errors using the REPL in Mu

CHAPTER 124

The >>> prompt in the REPL indicates that you can type
Python commands here to run immediately on the micro:bit.
Try typing the following after the >>> prompt and hitting
enter at the end of the line (this time spell scroll correctly):

display.scroll("The REPL is useful")

Your micro:bit’s display should immediately scroll out the
message, without your needing to upload a program. You don’t
need to repeat the import command, because MicroPython has
already executed import—it did so before it encountered the
misspelled scroll.

NOTE 	 When you were typing in your Hello World pro-
gram, you may have noticed Mu trying to help by guessing what
you were typing. For example, if you type display and then pause,
a list of options (clear, get_pixel, is_on, off, on, scroll, set_pixel,
and show) will appear. You can click on the one you want to save
yourself some typing.

Adding Graphics
Let’s now add some graphics to the program, just like we did
with the Blocks code. We again need to detect when button A
has been pressed and then display the graphics pattern. This is
a little trickier in MicroPython because this language doesn’t
have the same concept of events that you find in the Blocks
code. Instead, we have to write a loop that repeats the com-
mands contained within it until told to stop. In our program,
these commands will check for a button press and, if that event
has happened, perform the necessary action. In other words,
rather than being told that button A has been pressed, the pro-
gram has to keep checking whether it’s been pressed. Here is
the code:

from microbit import *

display.scroll("Hello World")

while True:
 if button_a.was_pressed():
 display.show(Image.CHESSBOARD)

Getting Started 25

The while True line of code marks the start of the loop that
will continue until something stops it, like you unplugging
your micro:bit or pressing the reset button or ctrl-C at the
REPL. Whenever you make a loop, make sure to indent any
lines of code that should run in that loop. Luckily, Mu recog-
nizes when you have started a loop and helpfully indents the
next line for you.

The first line within the loop is an if statement. This
uses the button_a.was_pressed function to check whether the
button has been pressed since last time was_pressed was used.
If it has, then the lines indented below the if statement will
be run. You’ll notice that the next line is indented even more,
which means this line should only run if the if line is true (so
if the button was indeed pressed). In this case, this line of code
tells the display to show a ready-made graphic that belongs to
the Image library. I’ve chosen the CHESSBOARD image. We’ll talk
about if commands more later in “if Blocks” on page 29.

In Python, indentation is very important, and remem-
bering to indent can be a big cause of frustration when first
learning the language. Lines that are indented within, for
example, a while or an if command must be indented by
exactly the same amount. In Mu, this is four spaces. As
you practice coding in Python, knowing when to indent
will become easier and easier.

Programming Concepts
Here we’ll go over some key ideas in programming that are
worth understanding, particularly when you want to modify
some project code or start making your own projects. These
ideas are the same whether you’re using the Blocks editor
or MicroPython, so we’ll cover how to execute each concept
both ways, first in Blocks code and then in the MicroPython
equivalent.

Variables
A variable is a name associated with a value or multiple values.
When you want to use the value, you can call the name in your
code. Let’s illustrate this idea with some examples.

CHAPTER 126

The Blocks Code
One of the main categories in the Blocks editor is Variables.
Start a new project by clicking New Project from the Blocks
editor’s home page. Delete the forever block (we don’t need it)
and then from the Variable category, click Make a Variable....
When prompted for a new variable name, enter counter. Drag
the set counter to 0 block into the programming area and
click it onto the on start block.

Next, from the Input category, add an on button A pressed
block. Inside this block, add a change counter by 1 block from
the Variables category and then a show number block from the
Basic category. Finally, from the Variables category, drag out a
counter block and click it into the 0 in the show number block to
replace the 0.

Once you’ve done this programming, your code should look
like the following.

You can try out this program in the virtual micro:bit
on the left of the editor by clicking button A. You should
see the number displayed increase by 1.

Let’s have a look at what’s going on here. In the on start
block, you make a variable called counter and give it an initial
value of 0. When the on button A pressed block is activated, the
change block changes the value of the counter variable by add-
ing 1 and then shows the value of the counter variable on the
display.

Getting Started 27

In this case, our counter variable contains a number, but we
can also set variables to hold text and even collections of data.

The MicroPython Code
The MicroPython version of the program we just wrote looks
like this:

from microbit import *

counter = 0

while True:
 if button_a.was_pressed():
 counter += 1
 display.scroll(str(counter))

We import the usual micro:bit library, and then make a
counter variable and give it an initial value of 0. We make a
while loop that ensures that if button A is pressed, 1 is added
to counter. To add 1, we use +=, which is equivalent to the
change counter block.

When we want to display the new value, we have to con-
vert the numeric value into a text string with str(counter),
because the display command works only with strings.

Note that it’s perfectly okay to use one command inside
another. So here, we use the str command inside the display
.scroll command by putting it inside parentheses. When
you do this, the innermost command (str in this case) is run
first and supplies a value to the next command (in this case
display.scroll).

Arithmetic
In the previous example, you saw how we could add a number
to a variable. As well as addition, we can use all the usual
arithmetic options in programs, including subtraction, multi-
plication, and division.

The Blocks Code
Say we wanted to keep doubling a number instead of count-
ing by ones. We could alter the previous program so that the

CHAPTER 128

starting number for counter is 1 and the on button A pressed
block multiplies counter by 2, as shown here.

Now, instead of using a change counter by 1 block, we use a
set counter to block and, inside that, use a multiply block (×). In
the first part of the multiply block, we place the variable counter,
and in the second part, we put the number 2. Now every time but-
ton A is pressed, counter is given the value of 2 times its old value.

When we use blocks, math like this rapidly becomes quite
complicated, as we need to nest blocks inside of blocks inside of
other blocks. If we have a program that needs to do a lot of arith-
metic, it may be better to code the project using MicroPython.

The MicroPython Code
In MicroPython, we use arithmetic symbols such as +, -, *
(multiply by), and / (divide). You can also use brackets to
change the order of the math operations, as you do in math
class. Here’s how we would rewrite the doubling Blocks pro-
gram we just made:

from microbit import *

counter = 1

while True:
 if button_a.was_pressed():
 counter = counter * 2
 display.scroll(str(counter))

Getting Started 29

The key line here is counter = counter * 2. The = symbol
after the variable name means that whatever follows the equal
sign will be assigned to the variable as its new value. In this
case, that’s counter * 2 (counter times 2). You could also use
the shorthand form counter *= 2, just as we did earlier when
doing addition.

if Blocks
Programs can be thought of as a series of steps that the
micro:bit will carry out. Sometimes you’ll need your program
to make decisions and execute particular steps based on those
decisions. The blocks in the Logic category allow your pro-
grams to make decisions.

We’ll make a variation of our counting-by-1 example that
counts up to 10 and then goes back to 0 to start the counting
process over.

The Blocks Code
Try making the following Blocks program.

CHAPTER 130

First, we add an if block after the change counter by 1
block. Onto the if block, we drop a comparison block that com-
pares the value of counter to 10. If the counter value is greater
than (>) 10, the program runs the blocks inside the if block. In
this case, the if block contains a single block that sets counter
back to 0. If counter is not greater than 10, then it continues to
show the number on the display.

There are other variants of the if block that let you carry
out one action if a condition is true and another action if
the condition is false. You’ll learn more about these in later
chapters.

The MicroPython Code
We’ve already used if in MicroPython when we checked whether
a button had been pressed. Here, we’re not just using it to see
whether a condition is true or false. Instead, we’re comparing the
variable counter to the value 10. The MicroPython version of the
Blocks code looks like this:

from microbit import *

counter = 0

while True:
 if button_a.was_pressed():
 counter += 1
 if counter > 10:
 counter = 0
 display.scroll(str(counter))

Take a good look at the indentation of this program: we
have an if inside another if, which is itself inside a while. See
if you can figure out how this code works, using the explana-
tion of the Blocks version as a guide.

Strings
Remember that a string is a series of characters (numbers,
letters, or punctuation), often a word. You used a string in
your very first Hello World program in Figure 1-8 to display
the message Hello World.

Getting Started 31

The Blocks Code
Most of the blocks for strings can be found in the Text category.
The simplest of these is a block with a pair of quotes and a gap
where you can add your own text to make a string. You can use
this block to assign a string, rather than a number, to a variable.
Here we set the message variable to a string. This program will
display the string’s length.

We use an on start block, inside which we set the value of
the variable message to some text. In the show number block, you
can see a length of block and, inside that, the message variable.
The length of block supplies the number of characters in the
string message to show number, which then scrolls that number
across the display.

The Text category has other blocks that let you do things,
like join together two strings, chop out a section of a string,
and convert a string into a number.

The MicroPython Code
In MicroPython, string values are distinguished from other
program code by being enclosed in double quotes, just as in
Blocks code. We would write the previous Blocks program
like this in MicroPython:

from microbit import *

message = "This text is in a variable."

while True:
 display.scroll(str(len(message)))

CHAPTER 132

This works in the same way as the Blocks code. Notice
that we use the str command to convert the length of the
string len into a string itself so that it can be displayed.

Arrays and Lists
So far, we’ve used variables that contain just a single piece of
data, whether that’s a number or string. But sometimes you
need to keep a collection of values in a variable, often to access
each value in turn, like a sequence of notes that make up a
tune (as you’ll see in Chapter 2).

In Blocks code, a collection of values is called an array,
and in MicroPython, it’s called a list. The idea is the same for
both, however.

The Blocks Code
The Blocks editor has an Array category that contains array-
related blocks. The most important are set list to, set text
list to, and get value at. The first two allow you to create a
list containing numbers or strings, respectively, and get value
at lets you access a particular element of an array.

The following small program creates a variable called colors
and assigns it to an array of four strings. Then it picks a random
item from that array to display. Note that the array of block has
+ and - buttons that allow you to adjust the number of items in
the array when you create it.

Getting Started 33

We add an on button A pressed block. Inside it, we add a
show string block, inside which we add a get value at block. We
then add pick random (found in the Math category) to choose
any number from 0 to 3. Altogether, this means that when
button A is pressed, the pick random block selects a random
number between 0 and 3 and fetches the array element at that
position, and then the show string block displays that element.
Note that in both Blocks and MicroPython programming,
array numbering starts at 0 rather than 1, so if the number
0 is randomly chosen, the first element of the array will be
displayed.

The MicroPython Code
This is how you would write the previous Blocks program in
MicroPython:

from microbit import *
import random

numbers = ["orange", "yellow", "green", "blue"]

while True:
 if button_a.was_pressed():
 display.scroll(numbers[random.randint(0, 3)])

In MicroPython, we use square brackets, [and], to
enclose the elements of a list, and we separate the list ele-
ments with commas. We also use square brackets to access a
particular element of a list using its position. In this case, the
random.randint command, which returns a number between 0
and 3, is enclosed within the square brackets.

Programming Wrap-Up
This has been a very quick introduction to programming the
micro:bit. All the code for this book is available for download, so
you don’t have to master programming before you start doing
experiments and making projects. As you progress through
this book, you’ll be introduced to new blocks and MicroPython
language features, which I’ll explain as they come up.

CHAPTER 134

For more information on MicroPython for the micro:bit,
see https://microbit-micropython.readthedocs.io. If you’re new
to Python, you might find my book Programming micro:bit:
Getting Started with MicroPython (McGraw-Hill, 2018) a use-
ful accompaniment to this book.

Downloading the Code
Some of the programs in this book are long and complex, and
typing them out might not be something that a Mad Scientist
such as yourself is eager to do. If you don’t want to make the
programs yourself, you can just download them and flash them
to your micro:bit.

Downloading the Blocks Code
All the Blocks code is published on GitHub at https://github.com/
simonmonk/mbms/. When you click a link for the Blocks code,
the project will open in your browser.

Scroll down the GitHub page until you will see something
like Figure 1-19. You’re looking for a list of links to all the
Blocks code programs.

Figure 1-19: Links to the Blocks code for all the programs in this book

https://microbit-­micropython.readthedocs.io
https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Getting Started 35

To open one of the programs, just click the link. For
example, Figure 1-20 shows the result of clicking the link
for the musical doorbell project.

Figure 1-20: Following a link to the Blocks code for the musical doorbell
project

You’ll notice that Figure 1-20 does not look like the normal
Blocks editor window. That’s because you’re to just view the code
here and flash it onto your micro:bit to use. If you want to edit
the code, or just see the code in its more familiar editor, click the
Edit button at the top right. This will make a copy of the origi-
nal program for you, and then you’ll be able to edit this copy.

Downloading the MicroPython Code
You can download the MicroPython programs from https://
github.com/simonmonk/mbms/.

CHAPTER 136

If you’re used to using the Git software, you can clone the
entire project onto your computer. For non-Git-experts, here’s a
step-by-step guide for getting all the code.

1.	 Visit https://github.com/simonmonk/mbms/ and then
click the green Clone or download button and select
Download ZIP, as shown in Figure 1-21.

Figure 1-21: Downloading the code for this book

2.	 Find the ZIP file you just downloaded (mbms-master.zip)
in your downloads folder and extract all the files from it.

The process of extracting the files will vary, depend-
ing on whether you use Windows, macOS, or Linux. On
macOS and most Linux distributions, a ZIP file will auto-
matically extract when you open it. If you’re a Windows
user, be aware that while Windows will let you look inside
the ZIP file without extracting it into separate files, you
won’t be able to use the files unless you extract them.
To extract the files in Windows, right-click the archive
file in File Explorer and select the option Extract All
(Figure 1-22).

https://github.com/simonmonk/mbms/

Getting Started 37

Figure 1-22: Extracting the ZIP archive file in Windows

The extracted files will be contained in a directory
called mbms-master. Within this directory, you’ll find
another directory called python, and within this, you’ll
find all the MicroPython programs for the book as sepa-
rate files, each with the file extension .py.

3.	 Unfortunately, you can’t just double-click a program to
open it in Mu. To open a program, first open Mu and
go to Load. Then find the MicroPython program you
want to open. As a shortcut, I suggest you move all
the MicroPython programs from the python folder that
you just downloaded into the folder where Mu normally
expects to find its programs. By default, this is a direc-
tory within your home directory called mu_code. Now
when you click the Load button in Mu, you’ll see all the
MicroPython programs straight away.

CHAPTER 138

Summary
Now that we’ve looked at some of the basics of the micro:bit,
it’s time to get started with some proper Mad Scientist experi-
mentation and project work. We’ll begin with making and
detecting sounds using a micro:bit.

n this chapter, we’ll explore using sound with the
micro:bit. We’ll teach the micro:bit to play music
and even imitate speech, and we’ll get it to hear
sound by connecting it to a microphone. You’ll

try out a couple of experiments and create two simple
projects: the first project is a musical doorbell that lets
the Mad Scientist know when visitors have arrived,
and the second is a Shout-o-meter that measures and
displays the volume of sounds it detects.

2
SUPER SONIC

CHAPTER 240

Connecting a Loudspeaker
to a micro:bit
There are a couple of ways to hear sound from your micro:bit.
Which one you should choose depends on how much sound you
want to make.

The Quiet Method: Headphones
Perhaps the easiest way to get sound from your micro:bit is to
use alligator clip cables to connect the micro:bit to a pair of
headphones (see Figure 2-1).

Figure 2-1: Alligator clips attached to headphones

If you look closely at the metal plug on the headphones, you
should see that it is really made of three pieces separated by rings
of plastic. This means the plug has three connections. The section
closest to the headphones’ wire is the ground connection. Connect
this to the micro:bit’s GND (0V) connection with an alligator clip.

The other two connectors are the audio signals for your left
and right ears. If you want to hear sound in both ears, place
the alligator clip so that it spans both of the two connectors
on the end. You can also attach the alligator clip to the very
tip for sound in just one ear (as shown in Figure 2-1). Either
way, clip the other end of the alligator clip to any of the three
micro:bit pins: 0, 1, or 2. Micro:bit users traditionally use pin 0
for audio.

Super Sonic 41

NOTE 	 Headphones designed for use with a cellphone
that include a microphone will have four connectors on the
plug rather than three. This shouldn’t make a difference. You
can still use the tip as the audio connection and the connector
closest to the plug body as the GND connection.

To upgrade this method slightly, you can use an audio
jack adapter like the one shown in Figure 2-2. Just plug your
headphones straight into the adapter, with the black wire con-
nected to GND and the other to pin 0. Adapters like this fit
directly onto the headphones and provide a more reliable con-
nection than alligator clips.

Figure 2-2: An adapter to connect an alligator clip to a 3.5 mm audio jack

CHAPTER 242

The Ghetto Blaster Method: Speaker
With an amplified speaker such as the one shown in Figure 2-3,
you can produce a lot more sound using the same connection
methods described earlier: either connecting directly to the
speaker plug or using an audio jack adapter.

Figure 2-3: Connecting a micro:bit to an amplified speaker

Some speakers are designed especially for use with micro:bits.
Some of these have cables that end in alligator clips to attach
to your micro:bit, while others, like the Monk Makes Speaker
for micro:bit shown in Figure 2-4, end in pins similar to the
micro:bit’s, making it easy to connect the two with alligator
clip cables.

Figure 2-4: The Monk Makes Speaker for micro:bit

Super Sonic 43

Amplified speakers need a power source. In some cases,
the amplified speaker may have its own batteries or USB
cable. Otherwise, the micro:bit itself could power the speaker,
in which case the devices will have to connect in three places:
to GND (0V) and 3V on the micro:bit in order to power the
speaker and to pin 0 (or one of the other pins) for the audio sig-
nal coming from the micro:bit.

Whatever you’re using for audio output, let’s test it out!

Experiment 1:
Generating Sounds
In this experiment, you’ll learn how to generate sounds using
your micro:bit and a loudspeaker or headphones.

What You’ll Need
To carry out this experiment, you just need:

Micro:bit

Speaker or headphones

Alligator clip cables

You can find sources for these in the appendix.
Here we’ll assume you’re using a Monk Makes Speaker

for micro:bit and a set of alligator clips, but any of the speaker
connection methods listed earlier will work.

Construction
1.	 Connect the speaker using one of the methods shown in

Figures 2-1 to 2-4. Then plug your micro:bit into your
computer.

2.	 Go to https://github.com/simonmonk/mbms/ to access this
book’s code repository and click the link for Experiment 1:
Generating Sounds. Once the program has opened, click
Download and then copy the hex file onto your micro:bit.
If you get stuck, head back to Chapter 1, where we discuss
the process of getting programs onto your micro:bit in full.

https://github.com/simonmonk/mbms/

CHAPTER 244

If you prefer to use Python, download the code from the
same website. For instructions for downloading and using the
book’s examples, see “Downloading the Code” on page 34.
The Python file for this experiment is Experiment_01.py.

3.	 Once you’ve successfully programmed the micro:bit, press
button A. You should hear a tone through your speaker or
headphones!

Code
You won’t need much code for this experiment. Whether you
use Blocks code or MicroPython, it’s just a matter of detecting
button A being pressed and then playing a ‑.

Blocks Code
The Blocks code for this experiment is shown here.

The code uses the on button A pressed block to run the
play tone block every time button A is pressed. You drop
the play tone block into the on button A pressed block so it
clicks into place. Then from the drop-down menu, select the
tone you want to hear (in this case Middle C) and the dura-
tion of the note (1 beat).

MicroPython Code
Here’s the MicroPython version of the code:

from microbit import *
import music

while True:
 if button_a.was_pressed():
 music.pitch(262, 1000)

Python has a huge number of libraries, which are col-
lections of code that do a specific thing. By asking your code

Super Sonic 45

to use these libraries, you get access to a lot of functionality
without having to write complicated code yourself. The music
library is an example: it contains functions you can use to
make your micro:bit make sound. To make MicroPython use
the music library, you first import the library using the import
music command.

While Blocks code will handle some things on its own, like
knowing how often to run code and what order to run it in,
MicroPython requires you to make that clear in the code itself.
Here, you use a while True: loop to tell the micro:bit to keep
checking whether someone has pressed button A.

When someone does press button A, the note plays using
the pitch command, which needs two pieces of information: the
frequency of the note (262 is middle C) and the duration of
the note in milliseconds (in this case, 1000 milliseconds or
1 second).

Things to Try
You might like to try changing the tone produced. If you are
using Blocks code, go back to the browser and click the Edit
button to alter the code, then click Middle C. This will open
up a mini keyboard where you can choose a different note to
play. To change the note in MicroPython, enter a new number
instead of 262 for the frequency. Then click the Flash button
again. Later in this chapter, you’ll learn a better way to choose
notes using MicroPython.

You could also try making both buttons A and B play
tones and even have them play different tones—a chord!

How It Works: Frequency and Sound
How does the micro:bit create sound in the speaker? Essen-
tially, the micro:bit switches a current (the flow of electricity)
on and off incredibly fast, causing part of the speaker to
vibrate, creating sound. The speed at which the micro:bit
switches the current on and off determines the frequency of
the sound, and that’s what makes different tones. I’ll explain
this in more detail.

Figure 2-5 shows the parts of a loudspeaker. A rigid, usu-
ally metal frame holds a cone in place. The narrow end of this

CHAPTER 246

cone is cylindrical and has a coil of wire wrapped around it.
Around this coil, fixed to the frame of the loudspeaker, is a
strong magnet.

When a current passes through the coil, it—and hence the
whole cone—moves back and forth very rapidly. This vibration
creates pressure waves in the air that we hear as sound.

Cone

Frame

Fixed
magnet Coil

Terminals

Sound waves

Figure 2-5: A loudspeaker

To make a particular sound, the speaker cone needs
to move back and forth a certain number of times per sec-
ond. The number of times per second the speaker moves
is its frequency, measured in hertz (shortened to Hz). The
higher the frequency, the higher the pitch of the sound. A
frequency of 262 Hz corresponds to middle C on a piano.
The C an octave higher has a frequency of 524 Hz, or double
middle C. In music, when you go up an octave, you double
the frequency.

The micro:bit controls the current and therefore the fre-
quency by turning pin 0 on and off very rapidly. When pin 0 is
off, it has an output voltage of 0V, and when it is on, it has a
voltage of 3V. If you were to draw a chart of the output voltage
against time, it would look like Figure 2-6.

For obvious reasons, this type of wave is called a square
wave. Since a micro:bit’s outputs can only ever be on or off, this
is the only kind of wave that we can generate from the micro:bit.

Super Sonic 47

0V

3V

Time

Voltage

Figure 2-6: A square wave

When the micro:bit sends its signal to the amplified
speaker, the speaker takes the low current signal from the
micro:bit and increases the current to drive the speaker with
more power, making everything louder.

Now let’s experiment with making sounds.

Experiment 2: It Speaks!
The micro:bit’s MicroPython software has a really neat fea-
ture that allows you to make your micro:bit read out phrases.
In this experiment, we will try out this feature and have our
micro:bit talk to us.

Although the software that generates the speech was
designed for use with English, by experimenting with the
spelling, you should be able to make the library speak in
other languages.

This feature isn’t (at the time of writing) available through
the Blocks code, so we’ll be using MicroPython.

What You’ll Need
This project uses exactly the same hardware as Experiment 1.

Micro:bit

Speaker or headphones

Alligator clip cables

Construction
1.	 Connect the speaker using one of the methods shown in

Figures 2-1 to 2-4.

CHAPTER 248

2.	 This project uses the speech library, which is not available
in Blocks code, so this experiment code is for Python only.
Go to https://github.com/simonmonk/mbms/ and down-
load the Experiment_02.py file. You’ll also find code for the
other projects and instructions for downloading and using
the book’s examples on the GitHub page. Flash the pro-
gram onto your micro:bit.

3.	 Once the micro:bit has been successfully programmed,
press button A on the micro:bit. You should hear a message
being spoken through your speaker or headphones. The Mad
Scientist likes to hear this voice as it’s a reminder of their
dear old friend Professor Hawkins, who alas is no longer
with us.

Code
The MicroPython code for the experiment is listed here:

from microbit import *
import speech

while True:
 if button_a.was_pressed():
 speech.say("Mad Scientists love micro bits")

Aside from importing the speech library, getting the
micro:bit to speak is as simple as putting some text for it to
say in the say function.

The speech library is quite sophisticated—you can even
use it to vary the pitch to make your micro:bit sing! You can
find out all about the library at https://microbit-micropython
.readthedocs.io/en/latest/tutorials/speech.html.

Project: Musical DoorBell
Difficulty: Easy

The Mad Scientist is particularly partial to a musical doorbell.
In fact, you will not be surprised to hear that one of the scien-
tist’s favorite tunes is “Imperial March” from Star Wars.

In Chapter 10, we will revisit this project, adding a second
micro:bit that will make the doorbell work wirelessly.

https://github.com/simonmonk/mbms/
https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html
https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html

Super Sonic 49

This project (shown in Figure 2-7) is a variation on Exper-
iment 1, except that instead of playing a single tone when a
button is pressed, the doorbell will play tunes. We’ll have but-
ton A play one tune and button B play another. You can see
a short video of the project in action here: https://youtu.be/
xmLupw4PxYQ/.

Figure 2-7: The musical doorbell project

Giving the visitor two tunes to choose from allows them
to indicate the level of urgency of their visit. Then if the Mad
Scientist is busy, they can just ignore the person at the door!

What You’ll Need
For this project, you will need the following items:

Micro:bit  To be the controller for this project and pro-
vide two buttons to press
3 × Alligator clip cables  To connect the micro:bit to
the speaker (Longer cables will make this easier)
USB power adapter or 3V battery pack with power
switch  To power the micro:bit and speaker
Speaker  To play the doorbell tune (I recommend the
Monk Makes Speaker for micro:bit)
Adhesive putty or self-adhesive pads  To attach the
micro:bit to the door frame and the speaker to the inside
of the door frame

https://youtu.be/xmLupw4PxYQ/
https://youtu.be/xmLupw4PxYQ/

CHAPTER 250

If you use batteries for this project, it’s a good idea to use
a battery box with a power switch so that when not in use, the
doorbell can be switched off to save the batteries. Otherwise,
the batteries will be exhausted after only a day or so of use. A
USB power supply offers a longer-term solution that can be left
on all the time.

Construction
When building a new project, it’s always worth constructing
and testing it at your desk before you fit it into place where it
will be used.

1.	 Connect the speaker to the micro:bit using the three alli-
gator cables, as shown in Figure 2-7.

It’s a good idea to use color-coding for your cables,
with black for GND, red for 3V, and any other color for the
audio connection from pin 0 of the micro:bit. Using differ-
ent colors will help you keep track of the connections.

2.	 Go to https://github.com/simonmonk/mbms/ to access
the book’s code repository and click the link for Musical
Doorbell. Once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you get

https://github.com/simonmonk/mbms/

Super Sonic 51

stuck on this, head back to Chapter 1, where we discuss
the process of getting programs onto your micro:bit in full.
If you prefer to use Python, download the code from the
same website, along with instructions for downloading and
using the book’s examples. The Python file for this experi-
ment is ch_02_Doorbell.py.

3.	 Once the micro:bit has been successfully programmed,
press button A on the micro:bit and you should hear a
tune playing (Scott Joplin’s “The Entertainer”). Now press
button B and you will hear Frédéric Chopin’s “Funeral
March.”

4.	 Once you have everything working, disconnect the micro:bit
from your computer and plug it into your USB power adapter
or battery box. Test it out again to make sure you’ve got it
working. Then fix the micro:bit part of the project onto one
side of your door and the speaker side of the project to the
other side of the door. There are a few things to note here:

Firstly, sticking things to walls, even with adhesive
putty, can make a mess, so make sure you get permis-
sion if you need to. This is especially true if you are using
sticky pads, as these can attach quite permanently to
paint.

Secondly, the alligator clips will need to pass from
one side of the door to the other in such a way that they
don’t get too pinched when the door closes. So work out
where they need to go before you start sticking anything
down. In Chapter 10, we will make another version of
this project that uses a second micro:bit to provide a
wireless link.

Finally, if you are using a USB power adapter, you
will need a power outlet that’s close enough for the USB
power adapter to reach your micro:bit.

Code
Now let’s talk through the code for the project.

CHAPTER 252

Blocks Code
Here’s the Blocks code.

The code is similar to that of Experiment 1, with a few
differences. First, we have two stacks of code: one for button A
and one for button B. Second, we choose once from the repeating
menu, because we want the melody to play only once.

Third, we use the start melody block to play a whole
sequence of notes rather than just a single note. Notice that
these tunes are already available in the blocks—you just need
to select them from the menu!

MicroPython Code
Here is the MicroPython version of the program:

from microbit import *
import music

while True:
 if button_a.was_pressed():
 music.play(music.ENTERTAINER)
 elif button_b.was_pressed():
 music.play(music.FUNERAL)

This works exactly the same as the Blocks code. The music​
.play method is equivalent to the start melody block, and we use
if statements to check which button was pressed. The if state-
ments allow button A and button B to play different tunes.

Super Sonic 53

The same predefined tunes are available to play in both
Blocks and MicroPython code.

Things to Try
Picking from a selection of predefined tunes is all very well,
but the Mad Scientist may have particular tastes in music.
They may want to compose their own tunes!

If you are using Blocks code, you can make your own tune
by creating a list of play tone blocks, like the example shown
here. You fill out the notes you want played, and each note is
played in turn.

So if you know all the notes for a particular tune, you can
create it like this. You’ll also need to specify how long each
note needs to play. You may have to experiment a bit before
you get your music to sound just the way you want.

Now let’s see how to create a tune in MicroPython:

from microbit import *
import music

notes = ['A4:4', 'A', 'A', 'F:2', 'C5:2', 'A4:4', 'F:2', 'C5:2',
 'A4:4']

while True:
 if button_a.was_pressed():
 music.play(notes)

The music library for MicroPython takes care of playing
whole tunes by letting you use a special notation to write
your own melodies. Each note is made up of a string of char-
acters (see Chapter 1 for more information on strings). The

CHAPTER 254

first character of the string is the note name (a letter A to
G). Next comes an octave number—middle C is in octave
number 4, so you will probably want to restrict your tune
to around octaves 3, 4, and 5. The octave number is optional,
and if you don’t give it, Python will assume you want the
first octave.

Once you specify an octave number, the music library
will assume that octave applies to all following notes until
you specify a different octave number.

Next, you can optionally put a colon followed by a dura-
tion. The duration is measured in quarter-notes. For example,
to play middle C for a half-note, you would write C4:2.

To string together several notes, you have to create a list.
So far we’ve used variables that hold only a single element. A
list is like a variable that can hold multiple elements, and you
can access and use each element independently. To indicate that
the notes variable contains a list of values, rather than just a
single value, you’ll separate the array values by commas and
enclose the whole thing between [and].

In our array, each element is a note string. To play the
whole sequence of notes, you use the play function, providing it
with the list of notes to play. This example plays the opening
few notes from the Star Wars “Imperial March.”

Here, you see we import the usual microbit library, as
well as the music library. We save our tune in a variable called
notes. Then we make another while True: loop so that the code
keeps running and checking whether the button was pressed.
We tell the program that if button A is pressed, it should play
the notes variable.

Project: Shout-o-meter
Difficulty: Easy

The Mad Scientist likes to measure things. To that end, this
project makes a simple sound meter that indicates the volume
of a noise. Then the scientist can tell the neighbors off for
making too much noise—and prove they really are.

Super Sonic 55

What You’ll Need
For this project, you need a microphone to pick up sounds so
you can measure their volume. I’m going to use the microphone
built into the Monk Makes Sensor, which has a bunch of sen-
sors. The sound’s volume then appears on the micro:bit’s LED
display. The louder the sound, the more LEDs will light up.

For this project, you will need the following items:

Micro:bit  To be the controller for this project and pro-
vide two buttons to press
3 × Alligator clip cables  To connect the micro:bit to
the speaker (Longer cables will make this easier)
Any micro:bit power source  Can be the USB com-
puter cable or a battery box
Monk Makes Sensor for micro:bit  To supply a
microphone

Construction
1.	 Connect the sensor board to the micro:bit using the three alli-

gator clips, as shown in Figure 2-8. You need to connect 3V on
the sensor to 3V on the micro:bit, GND to GND, and the hole
with the microphone picture to pin 0 on the micro:bit.

It’s a good idea to stick to the color-coding of the cables,
with black for GND, red for 3V, and any other color for the
microphone connection from pin 0 of the micro:bit.

Figure 2-8: The Shout-o-meter project

CHAPTER 256

2.	 Go to https://github.com/simonmonk/mbms/ to access
the book’s code repository and click the link for Shout-O-
Meter. Once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you get
stuck on this, head back to Chapter 1, where we discuss
in detail how to get programs onto your micro:bit.

If you prefer to use Python, then download the code
from the same website, along with instructions for down-
loading and using the book’s examples. The Python file for
this experiment is ch_2_Shoutometer.py.

3.	 Once you’ve programmed the micro:bit, try whistling near
the microphone (Figure 2-9) and notice how the LEDs
jump in response to the sound level. You can also try tap-
ping the microphone. You can see a short video of the
project in action here: https://youtu.be/6pGDSHmfFng/.

Microphone

Figure 2-9: The Monk Makes Sensor for
micro:bit microphone

Code
The Blocks version of this code is able to make use of the built-
in plot bar graph of block, whereas the MicroPython version is
more complicated because we have to implement our own ver-
sion of this feature.

https://github.com/simonmonk/mbms/
https://youtu.be/6pGDSHmfFng/

Super Sonic 57

Blocks Code
The Blocks language includes a useful block called plot bar
graph of that makes the code for displaying the sound level
really easy.

We put a forever block in, so the code inside is constantly
running. Then we add the plot bar graph of block, which will
display the loudness from the microphone.

As you can see, the analog value read from pin 0 of the
micro:bit has 511 subtracted from it before being passed to
plot bar graph of with a maximum value of up to set to 512.
The reason for this bit of math is discussed in “How It Works:
Microphone Output” on page 59.

Getting the right blocks assembled can be tricky, espe-
cially when it comes to math. Fortunately, the editor allows
you to freely move blocks around, so if they are not in the right
place to give you the results you want, you can just drag them
to where they should be. See Chapter 1 for more information
on editing code.

MicroPython Code
The MicroPython version of the code is a little more complicated
than the Blocks code. MicroPython does not have a built-in bar
graph display, so we have to write our own. The plot bar graph
of block provides a nice, smooth display, despite rapidly chang-
ing data. To get the same result in MicroPython, I had to add
code to read the maximum sound level from 10 samples.

CHAPTER 258

from microbit import *

def sound_level():
 max_level = 0
 for i in range(0, 10):
 sound_level = (pin0.read_analog() - 511) / 100
 if sound_level > max_level:
 max_level = sound_level
 return max_level

def bargraph(a):
 display.clear()
 for y in range(0, 5):
 if a > y:
 for x in range(0, 5):
 display.set_pixel(x, 4-y, 9)

while True:
 bargraph(sound_level())
 sleep(10)

We use the sound_level function and make a for loop to
take 10 samples of sound. Each sample value is (as with the
Blocks version of the code) the analog value with 511 subtracted
from it. However in this case, to scale down the number of rows
to be lit to 0 to 4, we divide the resulting value by 100. We then
compare the sound level stored in the variable sound_level to
the variable max_level and, if it is greater, max_level is changed
to be the sound_level. When all 10 samples have been taken,
the largest one will be in max_level, and this value is returned
by the function.

The bargraph function takes a value, represented by a, to
display. The higher the value, the more LEDs will be lit, indi-
cating a louder noise. This value should be between 0 and 4.
However, if it is greater than 4, it doesn’t matter—all the LEDs
in the display will turn on, but nothing else will happen. The
function works by looping over each row of the display, and, if
the value of a is greater than the row number, every LED on
that row is illuminated by the inner for loop that asks whether
x is in the range of 0 to 4.

All the main while loop has to do is call the function
bargraph, supplying it with the sound level returned by the
function sound_level.

Super Sonic 59

How It Works: Microphone Output
Figure 2-10 shows a graph of the output of the microphone
when it is detecting sound. Voltage is on the vertical axis, and
time in on the horizontal axis.

Figure 2-10: A sample of sound

As you can see from the left-hand side of the plot, before
the sound starts, the output voltage from the sensor is level
at about 1.5V. When the sound starts, the voltage oscillates
above and below this 1.5V value as the microphone picks up
the pressure waves of the sound. A reading of 1.5V on the
micro:bit gives an analog value of 511. This is why we subtract
511 from the reading before displaying it on the micro:bit; oth-
erwise, half the LEDs would be on during silence.

Summary
In this chapter, the Mad Scientist explored the world of sound,
both by producing music and speech from the micro:bit and
by detecting sound using a microphone. We have started our
exploration of the micro:bit with a couple of easy projects.

In the next chapter, we will take a look at light. We’ll
measure light with a special sensor and use the micro:bit’s
LED display. Then we’ll tackle a large project, using the multi
colored NeoPixel display and combining light with sound to
make a light-controlled musical instrument. After that, we’ll
move on to other, even more challenging projects.

3
LUMINOUS LIGHT

n this chapter, we’ll use the micro:bit to
experiment with light. First, you’ll learn how
to sense light levels, and we’ll build a light-
controlled guitar that plays notes depending

on how much light it senses. Then we’ll use light
to create an optical illusion infinity mirror that
appears to go on forever to help the Mad Scientist
fathom their most profound thoughts. MicroPython
doesn’t have a light-sensing feature yet, so you’ll use
Blocks code in this chapter.

CHAPTER 362

Experiment 3: Sensing Light
Let’s look at how you can use a micro:bit to measure the light
levels. Once you know how to do this, you’ll be able to make
all sorts of light-dependent projects, including the automatic
night-light and light-controlled guitar you’ll find later in this
chapter.

The micro:bit’s developers very cleverly built a feature into
the device’s software that allows it to measure the light level with
its LEDs. I’ll explain how in “How It Works” on page 63.

What You’ll Need
You just need a micro:bit and a USB cable for this experiment.

Construction
1.	 Visit the book’s code repository at https://github.com/

simonmonk/mbms/ and click the link for Experiment 3:
Sensing Light. Click Download and then copy the hex
file onto your micro:bit. If you get stuck, head back to
“Programming the Micro:bit” on page 11 where we dis-
cuss the process of getting programs onto your micro:bit
in full. Remember, this experiment only works on Blocks
code, so there’s no MicroPython code available to
download.

2.	 Once you’ve successfully programmed the micro:bit, a
number between 0 and 9 should appear on the display,
indicating how much light the micro:bit is detecting. Try
changing the light level by shading the micro:bit with your
hand or holding it under a light and see how the number
changes.

Code
Here is the Blocks code for this experiment.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Luminous Light 63

The light level block takes a reading from the micro:bit’s
light sensor and assigns it a value between 0 and 255 that
represents the brightness. But, if the number is more than one
digit, the micro:bit’s LED display will need to scroll to display
it, which is slow and inconvenient. By dividing that number by
26, the value will always be below 10.

After displaying the light level, the micro:bit pauses for
half a second to give you time to read the display. Otherwise,
the numbers would flicker past too quickly when the light level
changes.

How It Works
The micro:bit doesn’t have a dedicated light sensor. Instead,
it uses an ingenious trick to calculate light levels with its
display. You can read about this trick at https://lancaster-
university.github.io/microbit-docs/extras/light-sensing/.

Project: Automatic
Night-light
Difficulty: Easy

Although they’re reluctant to admit it, the Mad Scientist is a
little bit afraid of the dark. That’s why they developed a project
that uses a micro:bit’s display as a light that will automatically
turn on when night falls.

https://lancaster-university.github.io/microbit-docs/extras/light-sensing/
https://lancaster-university.github.io/microbit-docs/extras/light-sensing/

CHAPTER 364

This simple project builds on Experiment 3 to monitor the
light level and then turn on all the LEDs on the micro:bit’s dis-
play if the light gets too dim.

What You’ll Need
The only thing you need for this project is a micro:bit.

Because the micro:bit will have to stay on for a long time,
it’s best to use a USB power adapter or Monk Makes Power for
micro:bit (see “Powering Your Micro:bit” on page 248) for this
project. Batteries run out of power too soon.

Construction
1.	 Visit the book’s code repository at https://github.com/

simonmonk/mbms/ and click the link for Automatic
Night-Light. Then click Download and copy the hex file
onto your micro:bit. If you get stuck on this, head back to
“Programming the micro:bit” on page 11, where we dis-
cuss the process of getting programs onto your micro:bit
in full.

2.	 Once you’ve programmed the micro:bit, the display should
illuminate when you shade the micro:bit with your hand.
When you take your hand away, the display should turn off.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Luminous Light 65

Code
The Blocks code for this project is shown here.

This code uses two if blocks. The first checks whether the
light level is less than 10, which would indicate that the envi-
ronment is very dark. If this condition is met, the code turns
on all the LEDs using the show leds block with all the LEDs
selected.

The second if block turns the LEDs off if the light level
is greater than 50. We leave a gap between the two levels of
10 and 50 to make sure the LEDs don’t flash on and off when
the light is close to either level. The technical name for the
difference between on/off values is hysterysis.

CHAPTER 366

Project: Light Guitar
Difficulty: Medium

Now it’s time to make a light-controlled guitar! This guitar
will play different tones when you wave your hand in front of
the micro:bit. You can see a video of this project in action at
https://www.youtube.com/watch?v=OFUYxIYCXQs.

I recommend attaching your micro:bit, a speaker, and a bat-
tery to a guitar-shaped cardboard cutout. (The Mad Scientist is
not terribly good at art, so the resemblance in Figure 3-1 is only
passing.)

Figure 3-1: The micro:bit becomes a musical
instrument.

The cables that connect the micro:bit to the speaker are
hidden behind the cardboard to keep things neat.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

3 × Alligator clip cables  To connect the micro:bit to
the speaker
3V battery pack  To power the micro:bit and speaker
(The kind with a switch works best.)
Speaker for micro:bit  To play the sound (Use a Monk
Makes Speaker or see Chapter 2 for other speaker options.)

Luminous Light 67

Blu-Tack or self-adhesive pads  To attach the
micro:bit to the cardboard cutout
Cardboard  To form the guitar body (You can use a
cut-up cardboard box.)
Paper glue (PVA or spray adhesive)  To stick the
paper outline to the cardboard
Paper with a guitar outline (optional)  You can
either draw your own guitar on paper or cut out and
decorate the cardboard directly.
Scissors  To cut out the outline of the guitar

Construction
It’s a good idea to create and test the program before attaching
your micro:bit to the cardboard, so we’ll do that first.

1.	 Connect the speaker to the micro:bit using the three alli-
gator cables, as shown in Figure 3-2.

It’s a good idea to color-code the cables so you remember
which is which. Use black for GND, red for 3V, and any other
color for the audio connection from pin 0 of the micro:bit.

Figure 3-2: Attaching the micro:bit
to a speaker

CHAPTER 368

2.	 Open https://github.com/simonmonk/mbms/ and click
for the Light Guitar project. Once the experiment has
opened, click Download, then copy the hex file onto your
micro:bit.

3.	 Once you’ve programmed the micro:bit, it should play a
different note when your hand gets close to it and shades
some of the light. If you don’t get a very large range of
notes, you may need to adjust its sensitivity (see “Code”
on page 71 for how to do this).

4.	 Disconnect the micro:bit from the USB cable. At https://
github.com/simonmonk/mbms/, you’ll find a folder called
other downloads that contains a drawing of a guitar
shape in PDF, PNG, and SVG formats. You can draw your
own guitar or print out this template.

5.	 Glue your guitar drawing to your piece of cardboard, as
shown in Figure 3-3.

Figure 3-3: Gluing the paper template to the cardboard

6.	 Using a pair of scissors, cut around the outline of the guitar.
Also cut out the two rectangles in the body of the guitar,
where you’ll put the wires connecting the micro:bit to the
speaker. The result should look like Figure 3-4.

Luminous Light 69

Figure 3-4: Cutting around the template

7.	 Using small balls of Blu-Tack, attach the speaker and the
micro:bit to the guitar so that the edge connectors of both
are accessible from the rectangular slots. Also attach the
battery box, as shown in Figure 3-5.

Figure 3-5: Attaching the micro:bit, the speaker, and
the battery box

When all three parts are attached to the guitar, the
project should look like Figure 3-6.

CHAPTER 370

Figure 3-6: The micro:bit, speaker, and battery box
have been attached to the guitar.

8.	 Flip the whole thing over and connect the micro:bit and
speaker, as shown in Figure 3-7. Reference Figure 3-2 if
you need help with the connections.

Figure 3-7: Connecting the micro:bit to the speaker

9.	 Connect the battery box to the battery connector on the
micro:bit. You’re ready to rock out!

Luminous Light 71

Code
The Blocks code for this project uses arrays.

We put the code that needs to be run only when the
micro:bit starts up in the on start block. This creates an
array of notes. An array is a list of values rather than a
single value. We’re using an array to provide a list of eight
possible notes for the micro:bit to play. Different light levels
will trigger different notes. The first line inside the on start
block defines a new array called notes, which initially just
contains the note Middle C. The add value blocks that follow

CHAPTER 372

add another seven notes to the array so that the variable
notes will eventually contain all eight of the notes we need.

The code inside the forever block will run continuously.
This is the code that tells the micro:bit to read the light
level and then uses that information to pick a note to play.
To do this, the code first reads the light level using the
light level block and divides the reading by 25. If you don’t
hear all eight notes, you may need to adjust the sensitivity
by tweaking this value of 25 down a bit.

The set to block names the resulting value note number.
Since the note number is the light level divided by 25, it will
be a value between 1 and 10.

But setting the maximum light level to 10 would cause
problems. When accessing items in an array, you specify the
position of the item you want. The maximum position we
can specify in this array is 7 (the eight notes are numbered
0 to 7). We want the guitar to work indoors where the light
is fairly low. However, if the light is really bright, then note
number might turn out to be 10, which would be outside the
array. To make sure that we don’t exceed this maximum
permitted value for note number, we add the if command
to check whether the note number is greater than 7. If it is,
the code sets it to 7—problem solved.

The play tone block accesses the item in the notes array
at the position of the value of note number and plays it for 1/8
of a beat.

Luminous Light 73

Project: Infinity Mirror
This seemingly magical mirror (Figure 3-8) is guaranteed to
impress any visiting mad scientists. Built into a small picture
frame, the mirror looks much deeper than it really is.

Figure 3-8: A micro:bit-controlled infinity mirror

Your micro:bit will control a strip of 30 LEDs mounted inside
a picture frame, and we’ll put some reflective film on either side
of the LEDs, allowing you to create interesting light effects.

You can see a video of this project in operation at https://
www.youtube.com/watch?v=-4Ud47OkIyY.

NOTE 	 This project is a little tricky because the reflective
film can be difficult to smooth out. If you stick with it, though,
the effect is worth it!

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

0.5 m Addressable LED Strip (NeoPixels)  One
WS2812B RGB 5050 SMD Strip should have 60 LEDs per
meter and be 0.5 meters long, with self-adhesive backing.
3 × Alligator clip to male jumper cables  To connect the
micro:bit to the LED strip

CHAPTER 374

Monk Makes Power for micro:bit  To power the
micro:bit and LED strip. Note that USB power will not
provide enough current for this project and a AAA bat-
tery pack will provide enough power only if the batteries
are very fresh.
6V DC wall wart power adapter  To provide enough
power for the LEDs. The power adapter should have a
DC barrel jack plug on the end. (See “Powering Your
Micro:bit” on page 248.)
Deep 7 × 5-inch picture frame  See additional infor-
mation about the picture frame below. You’ll need one
with plastic spacers, which a deep frame should contain.
Two 7 × 5-inch pieces of reflective window
film  Samples of reflective window film
Craft knife  To cut the reflective film and make a slot
in the picture frame spacer for the LED strip’s wires
Soapy water  To clean the glass and attach the film
Ruler or plastic card  To use as a squeegee
Adhesive tape  To remove the backing film from the
reflective window film

Look for a 7 × 5-inch (17.5 × 12.5 cm) picture frame that
has an insert designed for 6 × 4-inch photos. The important
thing about the frame is that it has sufficient depth, so look for
a frame like the one shown in Figure 3-9a–b. The one I used was
1.25 inches deep. Also make sure that there’s glass at the front of
the frame. Behind the glass, there should be a plastic spacer (on
which we’re going to stick the LED strip) and then the backboard.

a. b.

Figure 3-9: A deep photo frame for the infinity mirror: (a) front
and (b) with the back removed

Luminous Light 75

The reflective film reflects light, so it acts like a mirror.
It normally comes in large rolls for fitting to the windows of a
building. Luckily for us, the people who sell this film also usu-
ally offer small samples of the material, which are plenty big
enough for our needs. You’ll find it most easily online. Search
on eBay or Amazon by entering the phrase silver reflective
mirror window film and then look through the listings until
you find someone who offers sample sizes.

You’re going to need two pieces that are at least 7 × 5 inches,
but I recommend getting extra; attaching the film to the glass
of the photo frame and removing the bubbles is a little tricky,
so it’s a good idea to have a few spare sheets in case your first
attempts fail.

The easiest place to find the addressable LED strips is on
eBay, but it’s also sold through hardware sites like Adafruit
and SparkFun. Use the search term WS2812B RGB 5050
LED Strip. You’ll want to buy a strip with 60 LEDs per meter.
You’ll need half a meter for this project, so 30 LEDs in total.
These LED strips come in two varieties: waterproof (for out-
side use) or with a self-adhesive backing. You need the type
with the adhesive backing.

Construction
Now that you have your materials, we’ll attach the LEDs and
reflective film to the frame. After we program the LEDs, the
light will appear to go back into the frame forever, creating the
illusion that the frame is deeper than it is.

1.	 It’s worth making sure the LED strip works with your
micro:bit before you go through the trouble of constructing
the hardware for the project. To test it, connect the LED
strip to the micro:bit using the three alligator to jumper
cables.

Note that it’s also possible to connect the strip using
male-to-male jumper wires and normal alligator clips.

Also attach the DC power adapter and Monk Makes
Power for micro:bit board, as shown in Figure 3-10.

CHAPTER 376

Figure 3-10: Testing the LED strip with a micro:bit

The pins of the alligator to jumper pin cables will fit
into the three-way connector attached to the LED strip.
Your LED strip may have differently colored wires than
the ones shown in Figure 3-10, so it’s best to look at the
strip itself to see where the wires are soldered to it. One
wire will be marked GND; connect this to the GND con-
nection of the micro:bit. A second wire will be marked 5V;
connect this to 3V on the micro:bit. The final connection,
in the middle, will either be marked DIN (Data In) or have
an arrow pointing toward the LED. Connect this to pin 0
of the micro:bit.

2.	 Got to https://github.com/simonmonk/mbms/ and click the
link for Magic Mirror. Click Download to download the
code and then copy the hex file onto your micro:bit. If you
get stuck, head back to “Programming the Micro:bit” on
page 11, where we discuss the process of getting pro-
grams onto your micro:bit in full.

If you prefer to use Python, then download the code
from the same website. For instructions for download-
ing and using the book’s examples, see “Downloading
the Code” on page 34. The Python file for this project is
ch_03_Magic_Mirror.py.

3.	 Once you’ve loaded the program onto your micro:bit, you
should see LEDs blink on and off at random.

Figure 3-11 shows how the infinity mirror is con-
structed from the picture frame.

Luminous Light 77

Front glass

Reflective
film

Plastic
insert

Reflective
film

Hardboard
back

Slot for wires

Top

LED strip

Figure 3-11: How the infinity mirror is constructed

The following steps will lead you through this part of
the project build.

4.	 Take the photo frame apart and remove the plastic insert.
Using a craft knife, carefully cut out a slot in one corner
of the insert, as shown in Figure 3-12, for the cables to the
LED strip to go through.

WARNING 	 Craft knives can be very sharp, so be care-
ful and ask an adult for help.

Figure 3-12: Cutting a groove for the wires in the plastic insert

5.	 Without removing the backing tape, lay the LED strip around
the edge of the plastic insert. If it’s not long enough, you can
stretch it across the corners, as shown in Figure 3-13. When

CHAPTER 378

you’ve made sure it fits, peel off the backing film and fix the
LED strip to the inside of the insert.

Figure 3-13: Attaching the LED strip to the plastic insert

6.	 Now set the insert aside. The next step is to attach the
reflective film to the glass. Carefully remove the frame’s
glass and wash it in soapy water. Dry one side and set it
down with the wet side up.

Pick up the reflective film. There will be a backing
sheet of transparent plastic on the adhesive side of the
film. To separate this thin transparent layer, put adhesive
tape on both sides of the film and pull apart (Figure 3-14).

Figure 3-14: Removing the plastic backing from the
reflective window film

Luminous Light 79

Place the reflective film adhesive side down onto the
wet glass. Using a plastic card or ruler, push the bubbles
between the film and glass to the edge of the glass to
remove them (Figure 3-15).

Figure 3-15: Removing bubbles from the reflective window film

7.	 Let the film dry for about an hour. Then flip the glass over
and use a craft knife to trim the film to the same size as
the glass (Figure 3-16).

Figure 3-16: Trimming the reflective window film

CHAPTER 380

8.	 Lay the backboard of the frame on your second piece of
reflective film and cut the film to the same size as the
backing frame (Figure 3-17). You don’t need to remove the
protective film or stick the film to the board unless the film
does not lie flat when you put the frame back together.

Figure 3-17: Trimming the reflective window film for the backboard

9.	 Now it’s time to assemble the frame.
Put the glass back into the frame with the glass side

facing out. This will protect the film and make the mirror
look better (Figure 3-18a). If your picture frame included
a thin piece of cardboard meant to be used with a smaller
print, you can insert this after the glass.

Next, put the plastic insert back into the frame, allow-
ing the cable to escape through one corner (Figure 3-18b).
If the insert has a wider flat side designed to support the
photo, this should face away from the glass.

Luminous Light 81

Finally, place the cardboard back onto the frame, allow-
ing the cable to escape through one corner (Figure 3-18c).
Fix the back in place and flip the finished frame over
(Figure 3-18d).

a. b.

c. d.

Figure 3-18: Reassembling the frame

10.	 Reattach your micro:bit, and your magic mirror should
spring into life.

Code
We want to program the LEDs to blink on and off at random.
To do this, the code picks one of the LEDs at random, then
generates a random color and sets the LED to that color.

Blocks Code
Here is the Blocks code for the project.

CHAPTER 382

When using addressable LEDs (called NeoPixels in the
Blocks code), you need to assign the NeoPixel at block to a
variable, which we have called leds, in your on start block.
You must supply the NeoPixel at block with the pin used to
control the LEDs. In this case, we’ll use pin P0. Then specify
the number of LEDs on the strip, which is 30 in our case.
Finally, tell NeoPixel at how to define the colors. In this case,
that’s the standard RGB format.

We again use a forever block to keep this code running
continuously. In the forever block, we start by generating a
random number between 0 and 29 using the pick random block
and assign this number to the variable led. This selects one
of the LEDs. The color variable is then assigned random
amounts (between 0 and 255) of red, green, and blue.

The show block updates the LED strip with the change
we’ve just made.

Try experimenting with the code to change the LED colors.

MicroPython Code
Here’s the MicroPython version of the code.

from microbit import *
import neopixel, random

leds = neopixel.NeoPixel(pin0, 30)

Luminous Light 83

while True:
 led = random.randint(0, 29)
 color = (random.randint(0, 255), random.randint(0, 255),
random.randint(0, 255))
 leds[led] = color
 leds.show()
 sleep(5)

This code works in much the same way as the Blocks ver-
sion. Notice that you have to include the neopixel and random
libraries at the top of the program so that you can access the
LED strip and generate the random numbers.

The MicroPython neopixel library first defines the LED
strip as using pin 0, which is the micro:bit pin we attached it
to, and having a length of 30 LEDs. It does this using the com-
mand leds = neopixel.NeoPixel(pin0, 30).

The while loop then does the same job as the forever block
in the Blocks version, picking an LED at random and setting
it to a random color.

How It Works
Figure 3-19 shows how the infinity mirror works.

Front glass

A

B

C

D

Back Mirror

Figure 3-19: Light bouncing around in the infinity mirror project

Light from the LEDs heads off in all directions (A in
Figure 3-19). Some of that light travels up, toward the front of
the frame. The mirror film reflects some—but not all—of this
light back down to the mirror at the back of the frame (B).
The rest of the light escapes from the frame (C), and some
of it finds its way to the back of your eye, where it forms an
image.

CHAPTER 384

Meanwhile, some of the light that found its way down
to the mirror (B) will bounce back up toward the front glass
again (D). Some of this light will escape the picture frame
entirely and find its way to your eye, and the rest will perform
yet another bounce. It’s this bouncing back and forth of the
light that causes an endless succession of LEDs to seem to dis-
appear into the mirror, getting dimmer each time a proportion
of the light is lost.

Summary
In this chapter, you have learned how to both measure and
make light with your micro:bit. In Chapter 4, the Mad Scientist
turns their attention to magnetism.

4
MAGICAL MAGNETISM

	 s you saw in Chapter 1, the micro:bit
has a built-in magnetometer that serves

a variety of purposes. In this chapter,
we’ll use it to turn your micro:bit into a

compass that tells you which direction you’re facing.
We’ll also measure the magnetic fields of neodymium
magnets. Then, we’ll make a magnetic alarm that
rings whenever someone opens the door.

CHAPTER 486

Project: Compass
Difficulty: Easy

In this project, shown in Figure 4-1, you’ll use the micro:bit’s
built-in magnetometer as a compass. It will display an arrow
on the screen that points toward magnetic north.

Magnetic North

Figure 4-1: Finding north with a micro:bit compass

Unlike a conventional compass, this compass doesn’t always
point north. Instead, it shows you which way to turn in order to
be facing north.

Rotate until the arrow is facing straight ahead, and you’re
looking north!

What You’ll Need
For this experiment, you will need:

Micro:bit

Battery pack

You only need a micro:bit to make this compass, but if
you plan to navigate outdoors, then you’ll need a battery pack
as well.

Magical Magnetism 87

Construction
1.	 Go to https://github.com/simonmonk/mbms/ to access

the book’s code repository and click the link for Compass.
Once the program has opened, click Download and then
copy the hex file onto your micro:bit. If you get stuck on
this section, head back to Chapter 1, where the process of
getting programs onto your micro:bit is explained in full.

If you prefer to use Python, then download the code
from the same website, along with instructions for down-
loading and using the book’s examples. The Python file for
this experiment is ch_04_Compass.py.

2.	 Once you’ve loaded the program onto your micro:bit, you’ll
see a message prompting you to move your micro:bit in
a certain way. Follow the instructions. This will happen
every time you flash a program onto the micro:bit that
uses the magnetometer.

The purpose of moving your micro:bit this way is to
calibrate its magnetometer. The magnetometer chip on
the micro:bit is sensitive to local magnetic field variations.
By moving the magnetometer in different directions, you
help its internal filtering software to compensate for the

https://github.com/simonmonk/mbms/

CHAPTER 488

local distortions to Earth’s magnetic field. This is why it’s
a good idea to calibrate your compass again if you take
it outside, away from the metal objects commonly found
indoors. Also, a battery pack can affect the magnetometer,
so it’s best to calibrate with the same hardware you’ll use
on the final project.

Calibrating your micro:bit’s magnetometer is a bit like
doing a puzzle. As you move your micro:bit, more LEDs
will light up (Figure 4-2).

Figure 4-2: Calibrating your micro:bit’s magnetometer

3.	 To use the compass, attach a battery pack to your
micro:bit and take it outside, well away from items
such as computers and household appliances. Hold the
micro:bit level (so it’s flat). If the arrow points to the
right or left, slowly turn in that direction until the
arrow points straight ahead. When it does, you’re
facing magnetic north.

If the compass isn’t pointing north, try calibrating it
again by pressing button A.

Magical Magnetism 89

Code
The Blocks and MicroPython versions of the code follow the same
pattern. The heading, or bearing, (the direction the micro:bit is
pointing) is measured and then the program decides which of
the three arrows (north, west, or east) it should display in order
to direct the user in the right direction.

Blocks Code
Here is the Blocks code for this project.

In this project, we’ll set up the code so that you can calibrate
the magnetometer any time you want by pressing button A.

The calibrate compass block is inside the on button A
pressed block. The calibrate compass block will display the dot

CHAPTER 490

we used to calibrate the magnetometer earlier. You can then
roll it around the display, as we did at the start of this project.

In the forever block, assign the value of compass heading
(degrees from 0 to 359) to a variable called heading, which will
contain this heading.

Then create a large if block that consists of an if, an
 else if, and an else. This big block will test which direction
the micro:bit is facing and display an arrow on the LED dis-
play showing you which way to turn to be facing north.

If you’re writing this code yourself, you will notice that the
Blocks code library seems to offer only two kinds of if blocks:
if then and else. To add the else if then section, click the +
circled in Figure 4-3.

Figure 4-3: Adding another
section to if blocks

The first line of the large if block tests whether heading is
between 10 and 180 degrees, where 0 degrees is north. Thus, a
heading value between 10 and 180 would indicate that you were
facing east. In this case, the micro:bit would display the west
arrow, which points left. This arrow tells you to turn to the
left in order to face north.

If heading is not between 10 and 180, then the else if part
of the block tests whether heading is greater than or equal to
180 and less than 350 degrees. If it is, then the micro:bit dis-
plays the east arrow, which tells you to go right.

If heading is between 350 and 10 degrees, the else part
of the if block will display the north arrow, which points

Magical Magnetism 91

forward—you’re on the right track! Figure 4-4 shows how this
works (the numbers are possible values of heading).

North

350° 0° 10°

180°

West East

Figure 4-4: The arrow will point in one of
three directions, guiding you north.

MicroPython Code
Here is the MicroPython code for the project:

from microbit import *

while True:
 heading = compass.heading()
 if heading > 10 and heading < 180:
 display.show(Image.ARROW_W)
 elif heading >= 180 and heading < 350:
 display.show(Image.ARROW_E)
 else:
 display.show(Image.ARROW_N)

 if button_a.was_pressed():
 compass.calibrate()

This code uses the same logic as its Blocks code equiva-
lent: it checks the reading of the magnetometer and tells the

CHAPTER 492

micro:bit to display an arrow. Again, if the heading is between
10 and 180 degrees from north, the micro:bit shows a west
arrow; if it’s between 180 and 350 degrees, the micro:bit dis-
plays an east arrow; and if the heading is within 20 degrees of
north, an arrow points straight up, telling you to keep going in
the same direction.

Things to Try
See whether you can use a magnet to confuse the compass
about which direction is north.

How It Works: The Earth’s Magnetic Field
Earth’s magnetic north and south poles have strong charges,
creating a magnetic field all around the globe, as shown in
Figure 4-5.

North pole

South pole

Earth
Lin

es
 of

 eq
ua

l m
ag

ne
tic

 fi
eld

 st
re

ng
th

Figure 4-5: Earth’s magnetic field

The micro:bit’s magnetometer measures the strength of
Earth’s magnetic field to deduce the direction the micro:bit is
facing.

Magical Magnetism 93

Interestingly, the magnetic north pole is not exactly at the
top of the spinning ball that is Earth. The magnetic field can
be centered up to 20 degrees away from the geographic poles,
depending on where you are in the world.

Another interesting fact about the magnetic poles is that
they’re shifting at a rate of about 6 miles (10 km) a year. One
day, the poles will flip completely, meaning that magnetic
north will be at the southern end of the globe. This process
happens on Earth about every 450,000 years.

Experiment 4: Measuring
Magnetic Fields
Difficulty: Medium

As we just saw, the micro:bit’s built-in magnetometer is
sensitive enough that you can use it as a compass to find
north. It’s also a great tool for measuring the strength of a
nearby magnet. In this experiment (shown in Figure 4-6),
you’ll measure the strength of a magnetic field at various
distances.

What You’ll Need
In this experiment, you’ll need the following:

Micro:bit

Strong neodymium magnet

Ruler (preferably showing millimeters)

You’ll find all sorts of shapes and sizes of magnets on
eBay. As you can see in Figure 4-6, I’m using a disk-shaped
one with a diameter of 10 mm, but any neodymium magnet
of a similar size should work. Note that I’ve put a bit of tape
labeled N on one side of the magnet (more on this later).

CHAPTER 494

Figure 4-6: The neodymium magnet used for Experiment 4

WARNING 	 Neodynmium magnets are very strong,
so be careful when handling them. If two of them get stuck
together, it can be hard to separate them.

Construction
The program repeatedly scrolls a number across the micro:bit’s
display. This number represents the overall magnetic field
strength detected by the magnetometer. We are going to mea-
sure the field strength at various distances from the magnet.

1.	 Go to https://github.com/simonmonk/mbms/ to access the
book’s code repository and click the link for Experiment 4:
Magnetic Fields. Once the program has opened, click
Download and then copy the hex file onto your micro:bit.
If you get stuck on this, head back to Chapter 1, where the
process of getting programs onto your micro:bit is explained
in full.

If you prefer to use Python, download the code for this
project from the same website, along with instructions for
downloading and using the book examples. The Python
file for this experiment is Experiment_04.py.

2.	 Set your magnet on a flat surface so that it’s balanced on
its curved edge. A neodymium magnet is so strong that if
you set it down in this way, it will align itself with Earth’s
magnetic field (by spinning until one side is facing north),

https://github.com/simonmonk/mbms/

Magical Magnetism 95

just like a compass needle. Allow your magnet to do this
and then put a piece of tape on the side that’s facing north.
(You might need to use the Compass project, described
earlier in this chapter, to find north so you don’t acciden-
tally mark south instead.)

3.	 Align your ruler so the 0 cm mark is pointing north and
the 30 cm mark is pointing south, as shown in Figure 4-7.
The ruler allows you to make sure the magnet continues
to face north so that the effect of Earth’s magnetic field
remains constant.

North

Figure 4-7: Place the ruler in the north–south direction
to make sure your magnet continues to face north.

4.	 Set the magnet on its curved edge next to the 1 cm
mark on the ruler. Make sure the north side is facing
the micro:bit. Point the micro:bit south and align its
edge with the 0 cm mark. Record the reading displayed
on the micro:bit in the following table, in the 1 cm row.
The unit of magnetic field strength is a tesla (which is
a very, very strong magnetic field), so the readings from
the micro:bit are in microtesla or millionths of a Tesla,
represented by µT).

CHAPTER 496

Distance from

micro:bit to

magnet (cm) Magnetic field strength (µT)

1
2
3
4
5
6
7
8
9
10

5.	 Move the magnet so it’s next to the 2 cm mark on the ruler.
Enter the new number displayed on the micro:bit in the
corresponding row in the table. Repeat this process for all
the readings up to 10 cm. Notice that the field strength
decreases quickly as you move the magnet away from the
micro:bit.

6.	 Once you’ve taken all the readings, try plotting a chart of
your results. Make the vertical axis, or Y axis, show the
field strength in µT and plot the distance of the magnet
from the micro:bit in cm against the horizontal axis, or
X axis.

You can plot this graph by hand on paper, or, if you
prefer, you can make a copy of the Google Sheets spread-
sheet I’ve created for this experiment and then replace my
readings with the numbers you have just written down.
You will find a link to this spreadsheet at https://github
.com/simonmonk/mbms/. Open this link and, from the
spreadsheet menu, select FileMake a Copy to make

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Magical Magnetism 97

your own copy. Figure 4-8 shows the completed spread-
sheet with a chart of the readings underneath it.

Note that your readings might be different, as your
magnet may be weaker or stronger.

Figure 4-8: Make a graph of your results.

We’ll discuss these results in “How It Works: The Strength
of Magnets” on page 99.

Code
The code for this experiment is simple. It takes a reading,
displays it, and then repeats.

CHAPTER 498

Blocks Code
Here is the Blocks code for this project.

The show number block displays the result of the magnetic
force block inside the forever block.

The magnet force block has four options, which you can see
in the drop-down menu of this block. You can either get a sepa-
rate reading for the force in one of the three dimensions X, Y,
or Z, or you can get the combined force measurement from all
three dimensions. We will use the combined measurement,
which is the strength option in the drop-down menu.

MicroPython Code
Here is the MicroPython version of the code:

from microbit import *
while True:
 display.scroll(str(int(compass.get_field_strength() / 1300)))

In MicroPython, the get_field_strength function takes read-
ings from the micro:bit’s magnetometer. Unlike the magnetic
force block of the Blocks code, the MicroPython code does not
specify the units for the measurement it returns, but the read-
ing we get back is about 1,300 times the reading reported by the
equivalent magnetic force block. Therefore, divide the number by
1,300 and then convert this value with the int function to make
it an integer.

Use the str function to convert the number to a text string
so the scroll function can display it on the micro:bit screen.

Things to Try
Using the program for Experiment 4, try moving the magnet
farther and farther away to see how far away the magnet can
be and still show up on your micro:bit.

Magical Magnetism 99

How It Works: The Strength of Magnets
The chart in Figure 4-8 shows that as you move the magnet
away from the micro:bit, the magnetic field strength falls very
rapidly at first and then gradually levels off. In fact, the rela-
tionship between magnetic field strength and distance from
the magnet follows something called the inverse square rule.
That is, the field strength is proportional to 1 divided by the
square root of the distance from the magnet.

What this means is that when the distance between the
magnet and the micro:bit doubles, the field strength falls to a
quarter of its previous strength.

The strength of Earth’s magnetic field when measured on
the ground ranges from 25 to 65 µT. When you measure the
magnetic force without a magnet nearby, you should get read-
ings in this range. Even the super-strong neodymium magnet
used in this experiment has a field strength of only a few hun-
dred µT at a distance of a few centimeters. Magnets that are
used to look inside human bodies during magnetic resonance
imaging (MRI) scans typically have a field strength (where
the person lies) of 0.5 to 1.5 T. That’s several thousand times
stronger than the neodymium magnet. This is why you have to
take off any metal you are wearing when you go into an MRI
scanner!

Project: Magnetic
Door Alarm
Difficulty: Medium

We’re going to create a door alarm! By attaching a magnet to
a door and a micro:bit to a door frame, the Mad Scientist can
be alerted to the arrival of guests. The micro:bit will sound an
alarm when it detects a change in the strength of the magnetic
field. This is exactly what happens when someone opens the
door, moving the magnet farther away.

Figure 4-9 shows the project attached to the Mad Scien-
tist’s door.

CHAPTER 4100

Figure 4-9: A magnetic door alarm

What You’ll Need
For this project, you will need the following items:

Micro:bit 

3 × Alligator clip cables  To connect the micro:bit
to the speaker. These cables should be at least 15 cm
(6 inches) long.
USB power adapter or switched 3V battery pack 
To power the micro:bit and speaker. See the appendix for
other options for powering your micro:bit.
Speaker  You can use any of the methods for getting
sound out of a micro:bit discussed in Chapter 2. Here, I
used a Monk Makes Speaker for micro:bit.

Magical Magnetism 101

Adhesive putty or self-adhesive pads  To attach the
micro:bit and speaker to the door frame and the magnet
to the door
Neodymium magnet  As used in Experiment 4

Construction
Make sure to test the project before you install it on your door,
since you’ll need to experiment a little to determine the right
field strength to use. You’ll also need to calibrate the magne-
tometer before sticking it to a door frame.

1.	 Connect the speaker to the micro:bit using the three alli-
gator cables, as shown in Figure 4-9.

It’s a good idea to color-code your cables by using black
for GND, red for 3V, and any other color for the audio con-
nection from pin 0 of the micro:bit. That way, you won’t for-
get which cable is which. You’ll need to place the speaker at
least 15 cm away from the micro:bit, as speakers have strong
magnets that can disrupt the micro:bit’s magnetometer.

2.	 Go to https://github.com/simonmonk/mbms/ to access
the book’s code repository and click the link for Magnetic
Alarm. Once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you get
stuck on this, head back to Chapter 1.

If you prefer to use Python, you’ll find the code for this
at the same website, along with instructions for download-
ing and using the book’s examples. The Python file for this
experiment is ch_04_Magnetic_Alarm.py.

3.	 Once you have programmed the micro:bit, when you put
the magnet close to the micro:bit, the speaker should be
silent. Then when you move the magnet more than a few
inches away, the alarm should sound. Once the program
is working, disconnect the micro:bit from your computer
and attach it to either a USB power adapter or battery
pack. Then attach the micro:bit and speaker to your door
frame. Fix the magnet to the door itself, within an inch
(2.5 cm) of the micro:bit.

https://github.com/simonmonk/mbms/

CHAPTER 4102

WARNING 	 Adhesive putty can make a mess,
so make sure you get permission before you start sticking
things to the door and frame.

If you’re using a USB power adapter, you’ll need an
electrical outlet close enough to the door for the USB
power adapter to reach.

Code
In both versions of the code, the magnetic field strength is first
read and then compared with a threshold. If the threshold is
exceeded, then a note is played.

Blocks Code
Here is the Blocks code for the project.

Magical Magnetism 103

This code is basically saying that if the micro:bit reads a
magnetic force strength of less than 100 µT, it should play a
particular note for 4 beats. Since the strength of Earth’s mag-
netic field at the surface has a range of 25 to 65 µT, setting a
threshold at 100 µT should ensure we’re detecting the magnet
and not just picking up Earth’s magnetic field.

MicroPython Code
Here’s the MicroPython version of the program:

from microbit import *
import music

while True:
 if compass.get_field_strength() < 160000:
 music.pitch(523, 1000)

This code works in the same way as the Blocks code, but
because the units of get_field_strength are different from those
of the magnetic force block, the threshold for sounding the alarm
is different than in the Blocks code version. The units of the
field strength returned by get_field_strength are not specified
in its documentation (https://microbit-micropython.readthedocs
.io/en/latest/compass.html), so I chose the threshold value of
160,000 by trial and error.

We supply the command music.pitch with a frequency of
tone to produce. Unlike with the Blocks code, here we have to
specify the frequency of the sound wave rather than a note.
A frequency of 523 hertz (Hz) is the frequency of high C. The
music.pitch command also requires a length of time to play the
note. Here we’ve told the micro:bit to play the note for 1,000
milliseconds, or 1 second.

Things to Try
Could a thief defeat your new alarm? Try placing a sec-
ond magnet on the other side of the door frame, opposite
the micro:bit. If the second magnet is close enough to the
micro:bit, you may be able to open the door without trigger-
ing the alarm.

https://microbit-micropython.readthedocs.io/en/latest/compass.html
https://microbit-micropython.readthedocs.io/en/latest/compass.html

CHAPTER 4104

You could also change the alarm tone by changing the
frequency to some other value. The following table shows
some notes and their corresponding frequencies (to the near-
est whole number).

Note Frequency (Hz)

Middle C 262

D 294

E 330

F 349

G 392

A 440

B 494

High C 523

You can find a full table of musical notes and their frequen-
cies at https://www.liutaiomottola.com/formulae/freqtab.htm.

Summary
The micro:bit’s magnetometer is useful for more than work-
ing out which direction you’re facing. In this chapter, we’ve
explored how you can use it to sense the presence of a mag-
net and even to do some science by measuring magnetic field
strength.

In the next chapter, we’ll explore one of the micro:bit’s
other built-in sensors—its accelerometer.

https://www.liutaiomottola.com/formulae/freqtab.htm

5
AMAZING ACCELERATION

he accelerometer is arguably the most
useful of the BBC micro:bit’s built-in
sensors. It lets you measure the direction

and strength of a force, such as gravity,
that is acting on the micro:bit.

CHAPTER 5106

You can use the accelerometer for many things, including:

XX Detecting gestures like shaking, or even finding out that
your micro:bit is falling

XX Learning which way and how much the micro:bit is tilted
and using this to control your micro:bit

XX Measuring how quickly your micro:bit is accelerating when
it moves. (For example, you might use it in a pedometer to
see how many steps you take in a day.)

Experiment 5: Gestures
The micro:bit’s software includes gesture recognition, so it can
respond to certain motions, like tilting or shaking, that are
picked up by the accelerometer. In this section, you’ll program
the micro:bit to display a smile whenever you shake it.

Later in this chapter, you’ll learn how to deal with the raw
data that comes straight from the accelerometer chip so you
can measure acceleration.

What You’ll Need
In this experiment, you’ll just need your micro:bit.

Amazing Acceleration 107

Construction
1.	 Go to https://github.com/simonmonk/mbms/ to access the

book’s code repository and click the link for Experiment 5:
Gestures. Once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you prefer
to use Python, then download the code from the same web-
site. For instructions for downloading and using the book’s
examples, see “Downloading the Code” on page 34. The
Python file for this experiment is Experiment_05.py.

2.	 Once the program starts, shake your micro:bit, and you
should see a smile appear, then disappear, on the display.

Code
Using gestures in your program is similar in both Blocks and
MicroPython. Both languages have the same set of gesture
types. The main difference is that in MicroPython there is no
event mechanism for handling events; instead, you have to
keep checking for gestures in a loop.

Blocks Code
Here is the Blocks code for this experiment.

The acceleration gestures available in the Blocks code
work as events, just as pressing a button does. Start with an
on block. Click the triangle in to access a drop-down menu of
possible gestures, shown in Figure 5-1, and select shake.

https://github.com/simonmonk/mbms/

CHAPTER 5108

Figure 5-1: Selecting different gestures

The Different Gestures
The shake gesture responds to any significant shaking of
your micro:bit. The next two gestures, logo up and logo down,
respond to tilting the micro:bit front to back. The logo this
code refers to is the icon printed on the micro:bit board, near
the USB socket.

The screen up and screen down gestures respond to the
micro:bit’s orientation. For example, if you placed it screen side
down, you’d trigger the screen down event.

The tilt left and tilt right events respond when you tilt the
micro:bit from side to side by more than about 60 degrees. You
have to tilt it quite a lot to trigger these events.

The final four events relate to the overall force acting on
the accelerometer rather than the force in any particular direc-
tion. For example, if the micro:bit is in free fall, then the fall
will trigger the free fall event. The gestures 3g, 6g, and 8g
detect different amounts of force acting on the accelerometer,
measured in g (the acceleration due to gravity, or the g-force).
For example, you could detect a finger tap on the micro:bit.
Tapping the micro:bit doesn’t move it much, so you might think
that not much force is involved, but in fact tapping can exert
quite a high g-force.

Amazing Acceleration 109

MicroPython Code
Here’s the MicroPython code for this experiment:

from microbit import *

while True:
 if accelerometer.was_gesture('shake'):
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()

You’ll recognize most of the code here. We import
the usual library and then start a while True loop so the
main code runs continually. This loop checks whether the
micro:bit has detected shaking and, if it has, shows the
happy face!

Because MicroPython doesn’t have the concept of “events,”
you have to use the was_gesture function inside a while loop
to check for the shake gesture. You can also replace the shake
block with up, down, left, right, face up, face down, freefall, 3g,
6g, or 8g.

Things to Try
Try adding more gestures to the program for Experiment 5.
You can even make each gesture trigger a different icon on the
screen.

In Chapter 10, you’ll use gesture detection again to steer a
micro:bit-controlled robot rover!

How It Works: Force, Acceleration, and Gravity
We’ve been talking about force, acceleration, and gravity
as if the accelerometer measures all of these things, but it
really just measures the distance a certain mass moves.
Then it computes the other measurements. Let’s take a look
at what the accelerometer chip actually does to get a better
idea of what these three terms mean.

CHAPTER 5110

Figure 5-2 shows a rough sketch
of what’s inside the tiny accelerom-
eter chip attached to your micro:bit.

Imagine a tiny mass m attached
to a spring. (The mass is drawn as a
ball in Figure 5-2, but its shape isn’t
important.) Normally, the mass is
in position A, but if it’s being pulled
against the spring by some force
(for example, gravity), then it will
move to some other position, which
we’ll call position B. The stronger
the force, the bigger the difference
between A and B. By measuring this
distance, the accelerometer calcu-
lates the force acting on the mass.

Looking at Figure 5-2, you can see that the force of grav-
ity alone will pull the mass down. But the more the spring is
stretched, the more the spring pulls the mass in the opposite
direction to gravity. So gravity applies downward force to the
mass, stretching the spring, which then applies upward force.
When the two forces are equal but acting in opposite directions,
the difference between the distances B and A is a measure of the
gravitational force acting on the micro:bit. The larger the dis-
tance between A and B, the greater the force acting on the mass.

Remember that the g-force relates to the acceleration that
occurs due to gravity. Acceleration is an increase in speed. In
other words, if you drop your micro:bit off a tall building, the
acceleration g is the number of meters per second the micro:bit’s
speed increases by every second. If you dropped your micro:bit
off a tall building in a vacuum, there wouldn’t be any air to slow
down the micro:bit, and in this case, the speed of the micro:bit
would increase by about 9.8 meters per second for every second
it fell. So, if it were to start at a speed of 0 (as you’re holding it in
your hand) and then fall for 10 seconds, it would reach a speed of
98 meters per second (about 220 miles per hour).

Also, when the micro:bit meets the ground after traveling at
220 miles per hour, it will probably be smashed to bits.

However, if you dropped your micro:bit in a vacuum, then
its accelerometer would read 0 even though it was clearly

Force (F)

Mass (m)

Spring

B

A

Figure 5-2: The micro:bit’s
accelerometer

Amazing Acceleration 111

accelerating at 9.8 meters a second. This is because the accel-
erometer is not really measuring acceleration. As you saw in
Figure 5-3, it’s measuring the force acting on the mass inside
of the micro:bit. That force would be zero if the mass and the
spring were accelerating at the same rate, which they would be
since they’re both in the micro:bit.

If you were in space, well away from the gravitational pull of
celestial bodies, then the acceleration would be equal to the force
acting on the object divided by the mass of the object. Because
the mass is always the same, the accelerometer can tell us the
acceleration of the micro:bit as long as some force, any force, is
acting on it.

The accelerometer chip is actually more advanced than Fig-
ure 5-2 suggests because it has three force-measuring devices in
it, set to measure force in three directions, all at right angles to
each other. In other words, the chip measures the force acting on
it in three dimensions, X, Y, and Z, as shown in Figure 5-3.

X

Y

Z

Level
X = 0, Y = 0, Z = –1024 (g)

Tilted forward
X = 0, Y = 300, Z = –950

Figure 5-3: The micro:bit’s accelerometer measures force in three
dimensions.

If your micro:bit were sitting flat on a table, the X dimen-
sion would run left to right, the Y dimension would run front
to back, and the Z dimension would run above and below the
tabletop. So, if the micro:bit is completely horizontal on a flat

CHAPTER 5112

tabletop, the force of gravity will only be acting on the Z (up-
down) dimension, while the X and Y dimensions will measure
0 acceleration. Now, if you tilt the micro:bit forward a little, then
some of the force due to gravity will act on the Y dimension, so
the Y value will no longer be 0. This also means that slightly
less gravitational force is acting on the Z dimension, so the
value of Z will decrease slightly.

From the description so far, you might think that the
accelerometer is only useful for measuring the force of grav-
ity. In fact, looking at Figure 5-2, it is easy to imagine how
shaking the micro:bit or causing any kind of acceleration on
it would change the position of the mass.

Experiment 6: Real-Time
Acceleration Plotting
Mu has a great feature that will plot data coming from your
micro:bit in real time. In this experiment, you’ll use the Plotter
feature to see how the acceleration data changes when you move
your micro:bit.

NOTE 	 At the time of writing, the Plotter feature is avail-
able only on the Windows and Mac versions of the Mu Editor.
The experiment also shows you how to get an overall measure-
ment of acceleration, as well as separate readings for each of
the X, Y, and Z dimensions.

What You’ll Need
For this experiment, you just need a micro:bit connected to
your computer by a USB cable.

Construction
1.	 This project uses Mu’s Plotter feature, which you’ll need

Python for, so there’s no Blocks code for this. Find the code
at https://github.com/simonmonk/mbms/. The Python file
for this experiment is Experiment_06.py. Flash the pro-
gram onto your micro:bit.

https://github.com/simonmonk/mbms/

Amazing Acceleration 113

2.	 Click the Plotter icon in the Mu toolbar to open Mu’s
Plotter, shown in Figure 5-4. If you want to see the raw
data that Mu is using to create graphs, click the REPL
button.

Figure 5-4: Plotting accelerometer data using Mu

3.	 Tilt the micro:bit this way and that to see the changes in
the Plotter.

As you can see in Figure 5-4, there are four plots, each
drawn in a different color. There is one plot for each dimen-
sion (blue for X, green for Y, and orange for Z). There is also a
purple plot for the net acceleration, which is the combination
of the forces in all three dimensions. We’ll explain how the net
acceleration is calculated in “How It Works: Calculating Net
Acceleration” on page 11.

If you find that readings don’t appear in the REPL area of
the screen, you may have an old micro:bit that needs an update
for this to work. If this is the case, follow the instructions at
https://support.microbit.org/support/solutions/articles/
19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/
to update your device.

https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/
https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/

CHAPTER 5114

Code
Here’s the Python code that sends the accelerometer data to
Mu’s plotter:

from microbit import *
from math import sqrt

while True:
 x, y, z = accelerometer.get_values()
 net = sqrt(x*x + y*y + z*z)
 all = (x, y, z, net)
 print(all)
 sleep(100)

Import the usual micro:bit library. Then import the square
root function sqrt from the Python math library. We’ll use this
function to calculate net acceleration.

Add a while loop, which gets the readings for the X, Y,
and Z dimensions from the accelerometer in one go using the
get_values method. This line will return a tuple, which is a data
structure capable of holding multiple values. Assign this tuple
to three variables: x, y, and z. These will hold the three values,
respectively. We use these variables to calculate the net accel-
eration, which we assign to the variable net.

Next, send the net acceleration value along with the
individual values for the X, Y, and Z accelerations to Mu for
plotting. Mu expects the values you want to plot to be in the
form of a tuple, so create a new tuple, all, that contains all
four values.

Finally, print the tuple, which not only shows the values on
Mu’s REPL (for more information on this, see “The REPL” on
page 23) but also provides these values to the Plotter. You
can see the values printed in the bottom left of Figure 5-6.

How It Works: Calculating Net Acceleration
To calculate the net acceleration on the X, Y, and Z dimen-
sions, you need to use some ancient Greek technology: the
Pythagorean theorem.

To understand how this works, picture an acceleration
force as a line with an arrow on the end. The arrow indicates

Amazing Acceleration 115

the direction of the force, and the length of the line indicates
how strong the force is. Lines like these are called vectors, and
they are used often in physics.

Vectors are easier to under-
stand in two dimensions than
in three. Figure 5-5 shows some
two-dimensional vectors on the
X and Y dimensions. The blue
vector along the X axis has a
strength of 4, and the green
vector along the Y axis has a
strength of 3.

The purple vector, equiva-
lent to the combined effect of the
green and blue vectors, is the net vector our program calcu-
lated earlier. The net vector is useful because its length tells
you the overall strength of the force. To calculate the strength
of the net vector, you can use the Pythagorean theorem.

The Pythagorean theorem says that in a right triangle (a
triangle that has a right angle), the square of the hypotenuse
(the triangle’s longest side) equals the sum of the squares of
the other two sides.

Looking at Figure 5-5, you can see that we do indeed
have a right triangle, because the blue and green vectors
intersect at a right angle. Using the Pythagorean theorem,
we can say that the square of the length of the purple line
is equal to 32 + 42. That’s 9 + 16, which equals 25. So, the
length of the purple line is the square root of 25, which is 5.

The math works in three
dimensions as well as two. To
find the length of a net vector
for the dimensions X, Y, and Z,
take the square root of the sum
of the squares of all three X, Y,
and Z vectors.

Figure 5-6 shows the
three forces in the X, Y,
and Z dimensions at some
point in time.

4

5
33

Y

X

Net

Figure 5-5: Two-dimensional
vectors

4

5.4

2

3

Y

X

Net
Z

Figure 5-6: Acceleration forces
as vectors in three dimensions

CHAPTER 5116

Here’s the line of code that calculates the length of the
single vector that would replace the X, Y, and Z vectors.

 net = sqrt(x*x + y*y + z*z)

The X, Y, and Z values are found in a[0], a[1], and
a[2], respectively, in the tuple returned by accelerometer​
.get_values().

If the X, Y, and Z vectors were of lengths 4, 3, and 2, as
shown in Figure 5-6, then calculating the square of the length
of the net vector would look like this:

4 × 4 + 3 × 3 + 2 × 2 = 16 + 9 + 4 = 29

So, the length of the vector would be the square root of 29,
or about 5.4.

Project: Toothbrushing
Monitor
Difficulty: Easy

The Mad Scientist is usually a bit distracted by all the inter-
esting experiments going on, so they need some help brushing
their teeth thoroughly. That’s why the Mad Scientist has used
a micro:bit to create a toothbrush monitor (Figure 5-7) that
counts the number of strokes of the toothbrush.

Figure 5-7: A toothbrush monitor

The toothbrush monitor displays a score that ranges
from 0 to 9 on the display. It increases the score by 1 for

Amazing Acceleration 117

every 50 strokes of the toothbrush. When it counts a score of
10, it displays the happy face icon to show the Mad Scientist
that toothbrushing is all done—until next time.

WARNING 	 Don’t let your micro:bit get wet—it might
break!

What You’ll Need
For this project, you will need the following items:

Micro:bit

3V battery pack  To power the micro:bit. (The switched
type battery box is preferred.)
Manual toothbrush  Not the electric type
2 × Elastic bands  To attach the micro:bit and battery
pack to the toothbrush

This project is intended for a manual toothbrush. Elec-
tric toothbrushes won’t work with this project.

Construction
1.	 Go to https://github.com/simonmonk/mbms/ to access the

book’s code repository and click the link for Toothbrushing
Monitor. Once the program has opened, click Download
and then copy the hex file onto your micro:bit.

If you prefer to use Python, then download the code
from the same website. For instructions for download-
ing and using the book’s examples, see “Downloading the
Code” on page 34. The Python file for this experiment is
ch_05_Toothbrush_Monitor.py.

2.	 Plug the battery pack into the micro:bit and attach the
battery and micro:bit to the toothbrush using elastic
bands, as shown in Figure 5-7.

When positioning the bands, make sure they don’t
hide the display and that you can still reach the battery
pack’s on/off switch. Also, check that the bands aren’t over
the reset switch on the back of the micro:bit.

https://github.com/simonmonk/mbms/

CHAPTER 5118

3.	 Switch on the battery pack. Once it’s on, the micro:bit
should show 0. Brush vigorously, and after a little while,
the display should show 1.

Code
The programs for this project measure the acceleration and,
if it is above a certain level, they add 1 to a count variable to
record the number of brush strokes.

When the count of brush strokes becomes big enough to
qualify as another point in the tooth-brushing score, then the
score is also incremented and displayed.

Eventually, when the score gets to 10, the smiley face icon
is shown on the micro:bit’s display.

Blocks Code
Here is the Blocks code for the project.

Amazing Acceleration 119

This is probably the most complex program so far in the
book. The on start block defines four variables. Here’s what
each of them does:

strokes per point  This specifies the number of brush
strokes needed to advance your score by a point. If you
are a lazy brusher, then you can decrease this number so
that the points increase more quickly and you get your
smiley-face reward faster. Note, however, that your next
visit to the dentist may not be fun.
score  This is the number that increases as you complete
each set of 50 brush strokes until it reaches 10.
count  This is used to track the number of strokes com-
pleted since you earned a point. It starts at 0 and resets
each time the score goes up.
old mg  This variable holds the acceleration value in
milli-gravities the last time it checked for a brush stroke.
The program will compare this value to the new value to
detect brush strokes.

We make a forever block, and inside we have a set XX to
block. From the drop-down, we select mg so that that this block
puts the overall acceleration reading into a variable called
mg. In the acceleration (mg) block’s drop-down menu, choose
strength, which does the Pythagorean theorem calculation for
you. (If you’re using MicroPython, you’ll have to calculate it
yourself.)

Then a set change in mg block calculates the change in
acceleration strength by subtracting the current strength from
the previous strength (held in old mg). If the change is greater
than 800—indicating the start of a brushing movement—the
count increases by 1. The value of 800 was chosen by looking
at Figure 5-8, which is a plot of the net acceleration for a short
period of vigorous toothbrushing.

CHAPTER 5120

Figure 5-8: A plot of net acceleration during toothbrushing

On the plot, each peak represents one brush stroke, with the
maximum net acceleration occurring when the brush changes
direction. The value of 800 is enough to capture most strokes,
since most strokes produce a change in acceleration of around
1,000. If you brush your teeth quite gently, you might need to
decrease this threshold, or you could be left brushing your teeth
forever, never racking up a large enough score to stop.

Next, place the first if block to detect acceleration large
enough to indicate a brush stroke and, inside that, place a
second if block that checks the value of count. If the value has
exceeded the number you set earlier in strokes per point, then
the program adds 1 to score and displays the new score value.
Finally, the program checks whether score is greater than 9
and, if it is, displays a smiley-face icon.

MicroPython Code
Here is the MicroPython version of the code.

from microbit import *
from math import sqrt

strokes_per_point = 50
old_mg = 0
count = 0
change_in_mg = 0
score = 0
mg = 0
display.show(str(score))

Amazing Acceleration 121

while True:
 x, y, z = accelerometer.get_values()
 mg = sqrt(x*x + y*y + z*z)
 change_in_mg = mg - old_mg
 old_mg = mg
 if change_in_mg > 800:
 count += 1
 if count > strokes_per_point:
 score += 1
 display.show(str(score))
 count = 0
 if score > 9:
 display.show(Image.HAPPY)

The MicroPython code mirrors the Blocks code almost
exactly, except that the overall strength of the force has to be
calculated since MicroPython has no built-in function for this
for the micro:bit.

Things to Try
You could use this project as a pedometer—a device that mea-
sures how many steps you take when walking or running. To
do this, try simplifying the code to get rid of the score vari-
able, because we are now only interested in the number of
steps (equivalent to the strokes when toothbrushing). You’ll
want your code to keep track of steps and then, when you
press button A, display the number of steps you’ve taken. To
test it, tuck the project into your sock (remove the toothbrush
first) and walk around while counting your steps in your head.
Then see how many steps the pedometer says you’ve taken. If
the measurement isn’t accurate, you may need to change the
acceleration threshold from 800 to make the pedometer more
or less sensitive.

Experiment 7: Logging
Acceleration to a File
The Plotter built into Mu is great if you don’t mind keeping
your micro:bit tethered to your computer with a USB cable.
However, sometimes the Mad Scientist finds it useful to
record readings on the micro:bit remotely for later analysis.

CHAPTER 5122

In this experiment, you’ll use your micro:bit to record accel-
erometer readings in a file saved on the micro:bit. You can wave
the micro:bit around and do various other tests on it and then
look at charts of the measured acceleration.

The program will take about 60 readings per second, and
it can record about 45 seconds’ worth of samples before the
micro:bit runs out of memory.

What You’ll Need
For this experiment, you’ll need:

Micro:bit

3V battery pack

Construction
1.	 This project uses the micro:bit’s local filesystem, which

is not available in Blocks code at the time of this writing.
That means you’ll have to use Python for this experiment.
Download the code from https://github.com/simonmonk/
mbms/, along with instructions for downloading and
using the book examples. The Python file for this experi-
ment is Experiment_07.py. Load the program onto your
micro:bit.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Amazing Acceleration 123

2.	 When you turn on the micro:bit, its display will show an
X. This means it isn’t recording any readings. When you
click button A, the icon will change to a check mark, and
the micro:bit will start recording. It will stop recording
when you press button A again, at which point it will save
the accelerometer readings in a file that you can transfer
to your computer.

To test this out, press button A, wave the micro:bit
around, and press button A again.

3.	 To transfer the file containing the readings to your com-
puter, use Mu’s Files feature. Connect your micro:bit to
your computer with a USB cable and click the Files icon
in Mu’s toolbar (Figure 5-9).

The bottom of the window now has two columns. On
the left are the files saved on the micro:bit. In Figure 5-9,
there is only one file, data.txt. On the right are the files in
Mu’s code directory, which is in your home directory under
mu code.

Figure 5-9: Mu’s File feature in action

To copy the file from the micro:bit, just drag it from
the left area to the right area in the Mu window.

As with Experiment 6, earlier in the chapter, if the
Files feature doesn’t work in Mu, you may have an old

CHAPTER 5124

micro:bit that needs an update. In this case, follow the
instructions at https://support.microbit.org/support/
solutions/articles/19000019131-how-to-upgrade-the
-firmware-on-the-micro-bit/ to update your device.

4.	 Once you’ve transferred the data from the micro:bit to
your computer, you’ll plot the data by importing the file
into a spreadsheet, such as Excel or Google Sheets.

The procedure is a bit different depending on which
spreadsheet software you use. I’ll show you how to use
Google Sheets since it’s free. You just need to be logged
into a Google account.

Visit https://docs.google.com/spreadsheets/ and click
the Blank option in the Start a new spreadsheet area.
Then, from the Google Sheets menu, select File Import.
From the pop-up window that appears, select the Upload
tab and navigate to the data.txt file that you copied onto
your computer.

The recorded data should appear in the first
column of your spreadsheet. Select the column and
click InsertChart to create a chart of the data, like
the one shown in Figure 5-10.

Figure 5-10: Charting data recorded on the micro:bit

https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/
https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/
https://docs.google.com/spreadsheets/
https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/

Amazing Acceleration 125

Code
Here is the MicroPython code for this experiment:

from microbit import *
from math import sqrt
import os

filename = 'data.txt'

recording = False
display.show(Image.NO)

while True:
 if button_a.was_pressed():
 recording = not recording
 if recording:
 display.show(Image.YES)
 try:
 os.remove(filename)
 except:
 pass
 fs = open(filename, 'w')
 else:
 display.show(Image.NO)
 fs.close()
 if recording:
 x, y, z = accelerometer.get_values()
 net = sqrt(x*x + y*y + z*z)
 fs.write(str(net))
 fs.write('\n')
 sleep(10)

The micro:bit can save only a limited amount of data,
so import the os package, which will let you delete any data
already on your micro:bit.

Set the data filename as data.txt. You can change the name of
this file by altering the value of the filename variable, though I rec-
ommend keeping it as is until you’ve gotten the program working.

Make a variable called recording to keep track of whether the
project is recording or not. This is toggled between True and False
in the main while loop every time button A is pressed to start and
stop the recording of data. That’s what the line recording = not
recording does: if recording is True, the code sets it to False, and
vice versa.

CHAPTER 5126

Create a while True loop to run forever. Inside this loop
are two if statements. The first tells the micro:bit what to do
when button A is pressed, and the second checks whether we
are in recording mode. When button A is first pressed, record-
ing starts, the screen displays the YES image, and the os.remove
method deletes the existing data file.

We’ve put the remove command within a try: except: Python
structure. This ensures that if any error occurs (in particular, if
the data file can’t be deleted because it’s not there), the program
ignores the error and doesn’t crash the program.

The program then opens the file with a mode of w, which
means you can write in it. When button A is pressed again,
the screen displays the NO image and the file closes.

Also contained in the main while loop is another if block
that writes a reading from the accelerometer to the file as long
as recording is True. If the program runs for too long and fills
up all the file space, it will give an error. However, the data
that it wrote before it ran out of room will still be available.

The sleep command at the end of the recording slows
down the recording process so that you don’t run out of
memory too quickly.

Things to Try
This experiment will let you measure accelerations in various
practical situations. You could, for example, record the acceler-
ations on your micro:bit when you throw it into the air. If you
plan to try this, then it’s wise to take a few precautions:

XX Choose an environment with soft ground. That way, if
you fail to catch your micro:bit, it might survive. Dur-
ing experiments like this, it’s not unusual for a battery to
come loose or fall out of its holder.

XX Don’t throw your micro:bit somewhere where it may hit
someone in the head.

XX Attach the micro:bit to the battery pack. Elastic bands are
good for this.

XX Put your micro:bit in a case. A Kitronik MI:pro case with
MI:power battery backpack, shown in Figure 5-11, is a
great choice. If you use this case, you won’t need a battery
pack, because the case contains a tiny 3V battery.

Amazing Acceleration 127

Figure 5-11: Kitronik MI:pro case with MI:power battery backpack

You could also measure acceleration by securely attach-
ing a string to the micro:bit and swinging it gently in circles.
Again, be careful as the micro:bit could easily become detached
from its string, breaking or hurting someone nearby.

The filesystem used by the micro:bit is very limited; it has
only about 40KB available for storage. Therefore, previous
files may be erased every time you flash a new program onto
the micro:bit.

Project: Acceleration
Display
Difficulty: Easy

This project, shown in Figure 5-12, allows you to see the micro:bit’s
acceleration on its display. When the micro:bit is at rest, the
middle row of LEDs on the display will be lit. If you rapidly
move the micro:bit up, then the line of LEDs will move up the
display, like an elevator, in response to the increase in the net
force. Similarly, if you quickly move the micro:bit down, the
line will move down, indicating the reduced effect of gravity,
as if you were accelerating downward in an elevator.

CHAPTER 5128

Figure 5-12: A Micro:bit acceleration display

What You’ll Need
For this project, you just need a micro:bit. However, it’s useful to
have a battery pack if you want to make this project more mobile.

You could also use the MI:pro case and MI:power combina-
tion shown in Figure 5-11.

Construction
1.	 Go to https://github.com/simonmonk/mbms/ to access the

book’s code repository and click the link for Acceleration
Display. Once the program has opened, Download and
then copy the hex file onto your micro:bit.

If you prefer to use Python, then download the code
from the same website. For instructions for download-
ing and using the book’s examples, see “Downloading the
Code” on page 34. The Python file for this experiment is
ch_05_Acceleration_Display.py.

2.	 Try moving your micro:bit up and down, watching how
acceleration in various directions affects the reading. If
you can take your micro:bit for a ride in an elevator, watch
as the display shows whether you’re going up or down.

https://github.com/simonmonk/mbms/

Amazing Acceleration 129

Code
The code first takes a reading of acceleration and then uses a
bit of math to decide which row of the display to light up.

Blocks Code
Here is the Blocks code for this project.

All the code for this project is contained in the forever block.
It first reads the net acceleration and then calculates a value for
y. Here, y represents the row of the display that will light up.
When the micro:bit is stationary, the only force acting on it is
gravity, at a net force of 1,000 mg (1 g). Therefore, the program
subtracts 1,000 from the net acceleration and divides the result
by 100, so that each 1/10 of g will cause a change of 1 row in
the display. Finally, we add 2 to this result to display row 2 (the
middle row of LEDs, if you start counting at 0) by default.

CHAPTER 5130

Use two if blocks to make sure that the value of y remains
between 0 and 4 (for the 5 rows). To draw the correct row,
first clear the screen so the old row isn’t displayed along with
the new reading. Then use a for loop to loop over each of the
five LEDs for that row, which are represented by values of x,
to turn them on.

MicroPython Code
Here’s the MicroPython equivalent of the code:

from microbit import *
from math import sqrt

while True:
 x, y, z = accelerometer.get_values()
 acc = sqrt(x*x + y*y + z*z)
 y = int(2 + (acc - 1000) / 100)
 display.clear()
 if y < 0:
 y = 0
 if y > 4:
 y = 4
 for x in range(0, 5):
 display.set_pixel(x, y, 9)

This code is similar to the Blocks code, but you have to calcu-
late the net acceleration yourself.

Summary
The micro:bit’s accelerometer opens up a lot of opportuni-
ties for projects that detect the movement or orientation of a
micro:bit. In this chapter, you’ve explored some interesting
ways you can use the accelerometer.

You’ve also learned how to plot data coming from the
micro:bit using Mu’s Plotter and record readings into a file to
chart and analyze later.

6
MAD MOVEMENT

n this chapter, you’ll use a few different types
of motors to make two of the most impressive
projects in this book: an animatronic head
that swivels its eyes and talks and a robotic,

remote-controlled rover. These toys can amuse the
Mad Scientist for hours.

CHAPTER 6132

Experiment 8: Making a
Servomotor Move
One way to get things moving is to use a servomotor, like the
one shown in Figure 6-1.

Figure 6-1: A servomotor connected to a micro:bit

A servomotor is a small, low-powered motor with an arm
you can control with your program. Unlike most other motors,
servomotors don’t rotate all the way around. Instead, they
have a 180-degree range of motion. Your program can set the
position of the motor arm to a particular angle.

In this experiment, you’ll learn how to connect a servomo-
tor to a micro:bit and investigate how the servomotor moves.

Mad Movement 133

What You’ll Need
Micro:bit

Servomotor  A 9-g servomotor is ideal. A micro:bit has
just enough power to drive a small servomotor but would
struggle with a full-size one. Choose a servomotor that is
3V compatible. See the appendix for more details.
Alligator clip-to-male jumper cables  These connect
the micro:bit to the servomotor. (You can also use male-
to-male jumper cables; see below.)
USB connection to a computer, Monk Makes Power
for micro:bit or USB battery pack  An AAA battery
box may (depending on the servo) work, but AAA batter-
ies may not provide enough voltage for the servomotor.
See the appendix for options for powering your micro:bit.

Instead of using the alligator clip-to-male jumper cables,
you could use the more common male-to-male jumper cables by
pushing one end of the cable into the servomotor connector and
clipping an alligator cable to the other end. However, you would
need to make sure the connections don’t accidentally short out.
In general, alligator clip-to-male jumper cables will be a useful
thing to have in your micro:bit toolbox, so it’s worth getting some.

Construction
Connect the servomotor to your micro:bit.

1.	 Go to https://github.com/simonmonk/mbms/ to
access the book’s code repository and click the link for
Experiment 8: Servomotors. Once the program has
opened, click Download and then copy the hex file onto
your micro:bit. If you get stuck on this, head back to
Chapter 1.

If you prefer to use Python, you’ll find the code for
this at the same website. For instructions for download-
ing and using the book’s examples, see “Downloading the
Code” on page 34. The Python file for this experiment is
Experiment_08.py.

2.	 Servomotors come with different kinds of arms that
can be attached to the cog-like shaft of the motor. For

https://github.com/simonmonk/mbms/

CHAPTER 6134

this project, select a simple arm like the one shown in
Figure 6-1.

NOTE 	 Your servomotor should come with a little screw.
This is intended to fix the arm more permanently to the shaft.
If you’re planning to do the animatronic head project, keep the
screw nearby; otherwise, put it in a safe place for later use.

3.	 Connect your micro:bit to the servomotor using the alliga-
tor clip, as shown in Figure 6-2.

Figure 6-2: A servomotor connected to a micro:bit

4.	 The servomotor has three connections, which are color-coded:

Control  Orange or yellow (This pin controls the
position of the servomotor’s arm.)
+V  The red wire is the positive power wire. Servo-
motors ideally use 5V, but most small servomotors
will also work with the 3V of a micro:bit.
GND  Usually brown, sometimes black (This is the
negative power wire.)

5.	 Once powered up, the servomotor arm should jump to a
90-degree position, perpendicular to the servomotor. The
micro:bit will use this position as a reference point. If the
arm isn’t at 90 degrees, take it off and put it back on so that
it is, as shown in Figure 6-1. If you plan to make the anima-
tronic head, use the small screw to fix the arm in place.

Mad Movement 135

6.	 You now have a functioning servomotor! Pressing button A
should move the servo arm 10 degrees in one direction.
Pressing button B should move the servo arm 10 degrees
in the other direction. If you press both buttons together,
the current angle of the arm should scroll across the
micro:bit’s display.

Code
Both programs follow the same approach of first setting the
servomotor’s angle to 90 degrees and then waiting for button
presses to increase the angle, decrease it, or display it.

Blocks Code
Here is the Blocks code for this experiment.

CHAPTER 6136

We use a variable called angle to remember the current angle
of the servomotor. We define the angle variable in the on start
block and give it an initial value of 90. When the next servo write
pin block runs, it moves the servo arm to the position set in angle
so that the arm jumps to a 90-degree angle on power-up.

If you press button A, the on button A pressed block is called.
If you press button B, on button B pressed is called. The buttons
work in a similar way. The block for button A first checks whether
the angle is still greater than or equal to 10 and, if so, subtracts
10 from the angle to move the arm in one direction. The block for
Button B checks whether the angle is less than or equal to 170
and, if it is, adds 10 to the angle and moves the arm in the oppo-
site direction. Both use the servo write pin to set the servo to the
new angle as a result of the buttons being pressed.

MicroPython Code
Here is the MicroPython version of the code.

from microbit import *

def set_servo_angle(pin, angle):
 duty = 26 + (angle * 51) / 90
 pin.write_analog(duty)

angle = 90
set_servo_angle(pin2, angle)

while True:
 if button_a.was_pressed() and angle >= 10:
 angle -= 10
 set_servo_angle(pin2, angle)
 if button_b.was_pressed() and angle <= 170:
 angle += 10
 set_servo_angle(pin2, angle)

if button_a.is_pressed() and button_b.is_pressed():
 display.scroll(str(angle))

The MicroPython code works in much the same way as the
Blocks code. But unlike in the Blocks code, there is no predefined
function to set the servomotor to a particular angle. Fortunately,
we can write our own method using a little math and PWM
analog outputs (see “Making an Analog Signal: Pulse Width

Mad Movement 137

Modulation” on page 8), which generate the pulses that our
servomotor expects (more on this next).

How It Works: Servomotors and Pulses
You control servomotors by sending them a series of repeating
electrical pulses—in this case, from the micro:bit. The pulses
are generated by turning a pin on and off very quickly. The
servomotor knows how to act based on how long the pulse has
been high (3V) over a certain time period. The proportion of
time that the signal is high, and thus the pin is on, is known
as the duty cycle. This is different from the actual amount
of time that the signal is high, which is known as the pulse
width. We refer to this amount of time, measured in milli-
seconds (ms), as a width because we can visualize pulses as
a square wave (see Figure 6-3). The total length of the wave
(between each on pulse) is the period.

0.5 ms 1.5 ms 2.5 ms

20 ms

Period

Pulse width

Figure 6-3: Pulses controlling a servomotor

A servomotor expects to receive a pulse every 20 milli-
seconds, or at a rate of 50 pulses a second. Each pulse has a
width between 0.5 milliseconds and 2.5 milliseconds.

As you can see in Figure 6-3, the length of the pulse deter-
mines the position of the arm. If the pulse width is 0.5 ms, the

CHAPTER 6138

servomotor’s arm will be at one end of its range (0 degrees). If
the pulse width is 1.5 ms, the arm will be at its center position
(90 degrees). And if the width is 2.5 ms, the arm will be at
180 degrees.

Conveniently, the micro:bit’s default frequency for analog
output (see Chapter 1) is 50Hz—exactly the right frequency for
a servomotor. However, even the longest pulse is only 2.5 ms
out of a total period of 20 ms, meaning that the longest pulse
will only be high about one-tenth of the time.

Figure 6-4 helps to explain how the numbers used in the
MicroPython set_servo_angle function were calculated. The duty
value is the number supplied to the set_servo_angle function.
This value must be between 0 and 1023, where 0 is no pulse at
all and 1023 is a pulse so long that it lasts until the next cycle.

Angle
(degrees)

0 90 180

Pulse
(milliseconds)

0 0.5 2.51.5 2.0

Duty
(0–1023)

0

255

1023511 639

12826

Figure 6-4: Correspondence of duty values to pulse widths to servo arm
angles

The top line of Figure 6-4 shows the servo arm’s range of
positions in terms of angles from 0 to 180 degrees. The code
must convert this into a different range of numbers, from 0.5 to
2.5, that are the pulse widths corresponding to those angles.

To convert an angle in degrees to a pulse width in milli-
seconds, we’ll start with the information that a pulse of length
0.5 ms is equal to an angle of 0 degrees and a pulse of length
2.5 ms is equal to an angle of 180 degrees. We can then find
the degrees per millisecond by dividing the range of degrees
(180) by the range of pulse lengths (2), giving 90 degrees per
millisecond. Then, to calculate the pulse length of a new angle,
we begin with our baseline, 0.5 ms and add the angle we are
using divided by 90, the degrees per millisecond.

Mad Movement 139

Let’s consider an example. If the angle is 0 degrees, the
pulse length in milliseconds will be 0.5 (0.5 + 0/90 = 0.5). If
the angle is 90 degrees, the pulse length will be 0.5 + (90/90)
= 1.5 ms. And if the angle is 180 degrees, the pulse length will
be 0.5 + (180/90) = 2.5 ms.

Now we have a formula for the pulse length for an angle:

pulse_length = 0.5 + angle/90

But, referring to Figure 6-5 again, we need to convert the
pulse length in milliseconds to a duty value between 0 and 1023
because the set_servo_angle function expects a value in that range.

The duty value (0 to 1023) is calculated by multiplying
the pulse length in milliseconds by the number of steps per
millisecond (1023/20 ≈ 51). For example, a pulse length of
1.5 milliseconds would require a duty value of 1.5 × 51 ≈ 77.

In other words:

duty_value = pulse_length × 51

Combining these two formulas, we have:

duty_value = (0.5 + angle/90) × 51

This can also be written as (with rounding):

duty_value = 26 + angle × 51/90

So the values used in the write_analog function are between
26 and 128. This range reflects the fact that the pulses are quite
short in comparison to the maximum duty cycle value of 1023.

Project: Animatronic Head
(Mike the micro:bit Robot)
Difficulty: Hard

This animatronic head, shown in Figure 6-5, makes a great
project for a Halloween display. A servomotor moves a pair of
ping-pong ball eyes from left to right, and it uses the micro:bit’s
display as a mouth. When the head talks, the lights simulate a
simple animation of lips moving.

CHAPTER 6140

Figure 6-5: The animatronic head

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Servomotor  A small 9g servomotor is ideal.
Amplified speaker  For the head’s voice (Monk Makes
Speaker for micro:bit is a good choice.)
3 × Alligator clip-to-male jumper cables  To attach
the servomotor
3 × Alligator clip cables  To attach the speaker
2 × Ping-pong balls  For the eyeballs (Balls without
any writing or logos on them make decoration easier.
Grab a couple of spares, just in case.)
Thick card  Roughly letter or A4 card that is 3 mm or
more thick
Paper and access to a printer  To print a template for
cutting out the framework
2 × 3-inch (75 mm) paper clips  These are used to
make the axles that allow the eyes to swivel and the

Mad Movement 141

frame that connects the eyes to the servomotor. Ideally,
these are 1.5 mm in diameter.
Adhesive tape  For sticking the cardboard together and
sticking various things to the cardboard
Blu-Tack adhesive putty  To attach the speaker to the
cardboard
Paper glue  To stick the template onto the cardboard
Scissors and/or craft knife 

Paint or pens  To draw the eyeballs
A drill with 5/64-inch (#47) or 2-mm bit  To make
holes in the ping-pong balls
Pliers  To bend the wire

Construction
We’ll begin by creating the eyeballs.

1.	 Grab two ping-pong balls (Figure 6-6) and prepare to
decorate. The best way to draw an eyeball is to first find
two small circular items, one a bit bigger than the other
(perhaps the lid of a toothpaste tube and a ring) and then,
using the circular items and a pencil, trace two concentric
circles on the surface of the ping-pong ball. Once this is
done, color the outer ring (the iris) and the inner circle (the
pupil) two different colors.

Figure 6-6: Decorating an eyeball

CHAPTER 6142

2.	 Once you’ve drawn on the two balls to make them look like
eyes, drill three holes in each, through which you’ll feed
wires. Using a pencil, make three marks: with the pupil
of the eye facing you, make one mark at the bottom of the
ball, one at the top, and a final mark on the back opposite
the pupil. The holes on the top and bottom will be used to
thread the eyeball onto a vertical wire to hold it in posi-
tion. The hole in the back will be used to attach the second
wire, which will move the eye left and right.

WARNING 	 Using a drill can be dangerous! For this
part of the project, a responsible adult should use the drill or at
least supervise. The main precaution is to keep the ping-pong
ball on a flat surface and hold it from the sides. Then drill
from above, as shown in Figure 6-7. If you have a vise to clamp
the ball in place, that’s even better.

Figure 6-7 Drilling the eyeball

Mad Movement 143

3.	 Once you’re happy with the position of the marks, grab a
drill bit with a diameter slightly larger than that of the
paper clip wire and drill into the ping-pong ball. For the
1.5 mm paper clips, a 5/64-inch (#47) or 2-mm drill bit
is perfect.

4.	 Make a frame for the eyeballs. Start by completely straight-
ening out a paper clip. Then make the three bends labeled
A, B, and C in Figure 6-8.

65mm

55mm

A

B

C

Figure 6-8: Where to bend the paper clip to make the eye frame

5.	 Make bends A and C first. Both should be 90 degrees. These
will hold the eyeballs upright. Next, make a slight bend at the
center of the wire—this is bend B. Bend B will provide some-
thing to tape onto the cardboard chassis you will make next.
Place the eyeballs on the frame as shown in Figure 6-9.

Figure 6-9: Placing the eyes on the frame

CHAPTER 6144

6.	 Once you’ve mounted the eyeballs, you can bend the
10 mm tips of the wires over the eyeballs to prevent them
from falling off, as shown in Figure 6-9. Use pliers to
avoid hurting your fingers.

NOTE 	 These bends don’t have to be perfect the first time.
Plan to make some adjustments as you build the project.

7. 	 Now let’s start assembling the cardboard chassis that will
hold everything together. To make this easier, I’ve pro-
vided a template that can be downloaded with the code for
the book. The template is in the folder other downloads
and is called Animatronic_Head_Template. It is avail-
able in PDF, PNG, and SVG formats. Download it, print it
out, and fix it onto a slightly larger piece of cardboard, as
shown in Figure 6-10.

Don’t cut

Figure 6-10: The paper template glued to a piece of cardboard

8.	 Except for the places noted in Figure 6-10, cut along the
lines. This will give you the pieces of cardboard shown in
Figure 6-11. For many of the cuts, scissors will be fine, but

Mad Movement 145

you’ll really need a craft knife to make the cutouts for the
slots and servomotor.

Bottom

Top

Back

Front

Figure 6-11: The cardboard pieces for the chassis

WARNING 	 Only use a craft knife with adult supervi-
sion. Craft knives are very sharp, and it’s easy to accidentally
cut yourself with them.

9.	 Attach the micro:bit to the front card by poking holes
through the pairs of small circles marked on the front
of the board. Then, for each pair of holes, clip an alliga-
tor clip through the back. These clips will both allow you
to make electrical connections and keep the micro:bit
securely attached to the card.

Attach the alligator clips in the order suggested in
Figure 6-12: red to 3V, black to GND, and yellow to pin 0.
Make sure to attach two alligator clips each to the GND
and 3V connections of the micro:bit.

CHAPTER 6146

GND

3V
2
0

Figure 6-12: Connecting cables to the micro:bit

10.	 To connect the micro:bit to the servomotor, you’ll need to
attach three alligator clips with male jumper cables on one
end. Clip a yellow alligator clip with a male jumper cables
to pin 2. Then, pull back the insulating sheath on the red
alligator clip already attached to the 3V, expose some of
the metal, and clip the red alligator clip with male jumper
cable to the red clip. Do the same with the black GND
cable, pulling back the insulating sheath of GND’s black
alligator clip and attaching the black alligator to male
jumper cable (Figure 6-13).

Figure 6-13: Attaching the micro:bit to the front of the cardboard

Mad Movement 147

11.	 Now slot the bottom piece of cardboard into the front piece
and fix it in place using adhesive tape (Figure 6-14).

Figure 6-14: Attaching the bottom card to the front card

12.	 Now attach the speaker to the back card; use adhesive
tape or putty to secure it. Clip the other end of the three
alligator clips you’ve connected to the micro:bit (black, red,
and yellow) to their corresponding ports on the speaker
(GND, 3V, and 0, respectively). Affix the back card to the
bottom card using adhesive tape. As you can see in Fig-
ure 6-15, your chassis should now be in a U shape. The
red, blue, and yellow alligator clips here are waiting to be
attached to the servomotor.

Figure 6-15: The back card and speaker

CHAPTER 6148

13.	 With the servomotor arm fixed in place at 90 degrees
(review the end of Experiment 8 if needed), push the ser-
vomotor through the top card (the round face), threading
the servomotor’s wire through first. Notice that the ser-
vomotor’s shaft is not in the center of the servomotor but
rather toward one end; that end should be at the end of
the servomotor cutout that is closest to the center of the
top card (see Figure 6-16).

Figure 6-16: Connecting the servomotor

14.	 Attach the male jumper pins to the servomotor’s socket, as
described in Experiment 8.

15.	With everything connected together, attach the top
piece of cardboard to the rest of the chassis. The two
circles marking the position of the eyes on the top
piece should face the micro:bit end of the chassis
(refer to Figure 6-5).

16.	 Now attach the eyeballs and wire frame to the top card,
as shown in Figure 6-17. Adjust the bend in the middle of
the wire frame so that the eyeballs are centered over the
two circles drawn on the top card. Then use adhesive tape
to hold the wire in place. Give the eyeballs a little spin to
make sure they can turn freely.

Mad Movement 149

Figure 6-17: Connecting the eyeballs

17.	 To connect the servomotor to the eyeballs, you’ll need
to straighten out the other paper clip, as shown in
Figure 6-18.

115mm
55mm

7mm5mm

Figure 6-18: Making the connector between the servomotor
and the eyeballs

CHAPTER 6150

18.	To make the loop in the center of the wire, wrap the
wire tightly around a small screwdriver shaft (shown
in Figure 6-19). The diameter of the screwdriver I used
was about 3 mm, making the outside diameter of the
little loop around 5 mm. Use a screwdriver with a sharp
end that’s narrower than the shaft, or it will be hard
to slide the wire off once it’s been bent. Make sure to
straighten the legs of the wire as shown.

Figure 6-19: Using a screwdriver to bend a loop in the servomotor-
to-eyeball connector

NOTE 	 Screwdrivers are sharp and it takes strong
hands to bend the thick wire around the screwdriver, so you
might need adult help for this bit.

19.	 Adjust the connector by bending the paper clip until the
arms are the same distance apart as the holes in the backs
of the eyeballs. Then, hook the wire into the backs of the
eyeballs. Use one of the screws provided with the servomo-
tor to fasten the loop to the tip of the servomotor’s arm, as
shown in Figure 6-20. Depending on how snugly the servo-
motor fits its cutout in the top card, you may need to tape
down the motor to prevent it from moving.

Mad Movement 151

Figure 6-20: Fitting the servomotor–eyeball connector to the card

Now connect the USB cable from your micro:bit and try
the project out!

Code
First, we’ll use the code from Experiment 8 to test that our
mechanisms are all working. Once you’re sure everything is
working well, switch to the code for this project.

Using the Code from Experiment 8 as a Test
Go to https://github.com/simonmonk/mbms/ and click the
link for Experiment 8: Servomotors. Once the program has
opened, click Download and then copy the hex file onto your
micro:bit. If you prefer to use Python while testing, download
the Python file, Experiment_08.py, from the same website.

Once the code is loaded, try pressing the A and B buttons
to move the servomotor’s arm left and right. You will probably
need to adjust the connector wire slightly so that the eyes are
lined up and move freely left to right. Only take the servomo-
tor arm a few steps to either side of the 90-degree position or
the linkage might get jammed.

https://github.com/simonmonk/mbms/

CHAPTER 6152

Using the Real Project Code
Once you’re satisfied that the eyeballs are moving the way
they should, you can switch to the real project code.

Because this project uses a speech library, it is only
available in MicroPython form. Go to https://github.com/
simonmonk/mbms/ to download the Python file is ch_06
_Animatronic_Head.py.

Flash it onto your micro:bit and then gently poke the
robot. The accelerometer should pick up the movement and
tell your animatronic head to swivel its eyes, say something
witty, and then look straight ahead again. For a video of this
project, go to my YouTube channel (https://www.youtube.com/
watch?v=FAJTS2Z8ZDA).

The software for this project does two things: it detects
when the head is poked, and it triggers talking events after
random periods of time have elapsed. The code is rather long,
so instead of showing all of it, I’ll just highlight the key parts.
If you want to follow along, load the code into Mu.

To make it seem as though your animatronic head has a
mind of its own, we use the Python random library to give us
random numbers, which will trigger random events:

import random

Rather than give the head a free range of eye movements,
we keep a list of possible eye angles in the array eye_angles.
When we want to set the eyes in a random direction, we sim-
ply use the random function from the random library to take an
angle from this array.

If you’ve played around with the head, you’ve probably
noticed that it doesn’t know that many sentences. The phrases
it speaks are contained in the array sentences, shown here:

sentences = [
"Hello my name is Mike",
"What is your name",
"I am looking at you",
"Exterminate exterminate exterminate",
"Number Five is alive",
"I cant do that Dave",
"daisee daisee give me your answer do"
]

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/
https://www.youtube.com/watch?v=FAJTS2Z8ZDA
https://www.youtube.com/watch?v=FAJTS2Z8ZDA

Mad Movement 153

As with the eye angles, when we want a sentence, we’ll
take it from this array. As you can see in the code, with robotic
speakers, sometimes it’s better to spell a word phonetically
than spell it correctly.

The three lip images for the speech animation are created
as custom Image objects. Here is the one for the resting lip ani-
mation, a horizontal line:

lips0 = Image("00000:"
 "00000:"
 "99999:"
 "00000:"
 "00000")

Each of the five rows in Image is a string representing
one row of the display; each digit in the string represents the
brightness from 0 to 9 of a particular LED.

The images for the lips are held as an array in the vari-
able lips:

lips = [lips0, lips1, lips2]

Both the speaking and the lip animation are controlled by
the function speak, which takes in the sentence to speak as a
parameter:

def speak(sentence):
 words = sentence.split()
 for i in range(0, len(words)):
 display.show(random.choice(lips))
 speech.say(words[i])
 display.show(lips0)

To make sure that the lips animate as the words are spo-
ken, we use the split method to break the sentence into the
list of individual words saved as words. Then, for every word
in the list, we display one of the lip images (chosen at random
using the choice method from the random library) and have
speech speak the word. When all the words have been spoken,
the lip display shows the default lips0 image.

CHAPTER 6154

Next, we define an act() function:

def act():
 set_servo_angle(pin2, random.choice(eye_angles))
 sleep(300)
 speak(random.choice(sentences))
 set_servo_angle(pin2, 90)
 sleep(2000)

The act function does three things: it moves the eyes at
random by setting the servomotor to a random angle, it selects
a sentence to speak by calling speak, and it resets the eyes by
setting the servomotor angle back to 90 degrees. To allow for
some time between each step, the code makes a call to sleep.

Here is the main body of our code that uses all of our vari-
ables and functions:

while True:
 new_z = abs(accelerometer.get_z())
 if abs(new_z - base_z) > 20:
 base_z = new_z
 act()
 if random.randint(0, 1000) == 0:
 act()
 sleep(50)

In the main body of the code, we have a while True loop,
which means the commands execute until the code is signaled
to stop. This is useful for when you need code to respond con-
tinuously to input. Here, we want to be ready for the sudden
change in acceleration caused by a tap on the robot’s head.
First, the loop registers the acceleration from the accelerom-
eter. Then, it uses the abs function to get the magnitude of the
acceleration—in this case, we don’t care about the direction,
just how large the acceleration is.

In the first if statement, we check whether the accelera-
tion value has changed by more than 20 mg (milligravities).
If so, the base acceleration is updated to the new acceleration
(ensuring that the next time through the loop, the acceleration
has to change by another 20 mg), and act is called.

Mad Movement 155

In the second if statement, we give the animatronic head
a bit of randomness. The code picks a random number between
0 and 1,000. If it is equal to 0 (a 1 in 1,001 chance), the act
function is called. Even though this probability is very low,
since the value gets checked hundreds of times a second, the
head springs into action several times a minute.

Things to Try
Try using a USB battery or AAA battery box to power the
head instead of keeping it tethered to your computer with a
USB cable.

If you want to change up your head’s speech, go into the
code and add more sentences to the sentences array.

The speech library produces rather quiet speech that is
also quite indistinct. You can improve this a little by connect-
ing a bigger amplified speaker.

If you want to add a bit more to the project, take a look
at the code examples here: https://microbit-micropython
.readthedocs.io/en/latest/tutorials/speech.html. In this
code, the speech library is used to produce singing.

Project: Robot Rover
Difficulty: Hard

In this project, we’ll create a robotic rover. Using a clever app
called Bitty Controller, you’ll be able to control the little buggy
with your Android phone (Figure 6-21). The Mad Scientist
likes to use the rover to deliver notes to the lab assistants.

WARNING 	 We’re going to use some low-cost chassis
kits for this project, but the wires that come with these kits are
usually loose—meaning you’ll need to solder the wires onto
the motors. This is the only project in the book that requires
soldering. The soldering isn’t difficult, but it is dangerous
and you can easily get burned. So please find an adult to do
this part.

https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html
https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html

CHAPTER 6156

Figure 6-21: A micro:bit-controlled roving robot

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Android phone 

Kitronik Motor Driver Board for micro:bit (V2)  To
control the motors
Low-cost robot chassis kit  Includes two gear motors
and a 4 × AA battery box
4 × AA batteries 

Bitty Controller App for Android  From Google Play
Store (about $5)
Assorted screwdrivers  Suitable for both the nuts and
bolts on the chassis and the screw terminals on the motor
controller board
Soldering equipment  To attach the wires to the
gearmotors
Blu-Tack adhesive putty  To attach the motor control
board and micro:bit to the chassis

Mad Movement 157

If you search eBay or Amazon for robot chassis, you’ll find
low-cost robot chassis kits like the one shown in Figure 6-22.
Look for one that includes a 4 × AA battery box and two gear-
motors (motors with a built-in gearbox).

Figure 6-22: The low-cost robot chassis used by this Mad Scientist

Construction
Maybe the trickiest part of this project is the chassis kit assem-
bly. Getting the screws and bolts in the right place will require
precision and finesse.

Not all chassis will be the same, so instead of taking
you through the assembly step-by-step, I’ll just give you
some high-level advice. Your chassis should come with
instructions, although they may be somewhat cryptic. In
general, you’ll need to attach the gear motors, the castor
wheel (the wheel that can turn freely in any direction), the
motor controller, and the micro:bit.

1.	 Solder the supplied wires onto the motor terminals, as
shown in Figure 6-23a–c. If you work quickly, a good
soldering joint can be made by melting a generous

CHAPTER 6158

amount of solder onto the motor terminal and then
pressing the wire onto the dome of solder with the iron
(Figure 6-23a).

a. Soldering the first motor wire b. The first wire soldered in place

c. Both wires soldered to the gearmotor

Figure 6-23: Soldering wires onto the motor

2.	 It doesn’t matter much which terminal you attach the red
wire to. Just be sure to be consistent between the two
motors. That is, if you decide to attach the red wire to the
right-hand terminal on one motor, solder the red wire to
the right-hand terminal of the other motor as well.

3.	 Remove the layer of paper covering the chassis. Fig-
ure 6-24a–e shows the assembly process at a high
level. You may find that your chassis is different.

Mad Movement 159

a. Attaching the first motor b. Both motors fitted

c. Spacers bolted onto the castor d. The castor bolted to the chassis

e. The completed chassis with
battery box bolted to the top

Figure 6-24: Building the chassis

Here are a few things to remember when building the chassis:

XX Don’t overtighten the nuts and bolts, as doing so can cause
the plastic chassis to crack.

XX When attaching the gearmotors, put the nuts toward the
inside of the chassis so that the motor-fixing bolts that
stick out beyond the nut won’t get in the way of the wheels.

CHAPTER 6160

XX If the bolt doesn’t turn smoothly into the nut, try turning
the bolt counterclockwise a little to find the start of the
nut’s thread. You may want to use a pair of small pliers to
grip the nut while you turn the screw with a screwdriver.

4.	 Once you have the chassis securely assembled, attach the
micro:bit to the Kitronik Motor Driver board with the
micro:bit’s screen facing outward, as shown in Figure 6-25.
Line up the micro:bit’s edge connector carefully with the
socket on the Motor Controller and press it firmly into place.
When your controller looks like Figure 6-25, stick it to the
chassis using adhesive putty, also shown in Figure 6-25.

Figure 6-25: Attaching the micro:bit

5.	 It’s time to wire up the motors and battery box. First, look
at Figure 6-26 to see what you are aiming for. Unscrew
the screw on the relevant terminal, place the wire firmly
inside the terminal, and then screw the screw back in
fairly tightly.

Mad Movement 161

Figure 6-26: Wiring up

6.	 Make the following connections:

XX Red (positive) wire from the battery box to the screw
terminal marked RED + on the Motor Controller

XX Black (negative) wire from the battery box to the screw
terminal marked BLACK - on the Motor Controller

XX Red wire from the left (as viewed from the back of the
rover) motor to the screw terminal on the Motor Con-
troller labeled MOTOR1 P12

XX Black wire from the left motor to the screw terminal
on the Motor Controller labeled MOTOR1 P8

XX Red wire from the right motor to the screw terminal
on the Motor Controller labeled MOTOR2 P0

XX Black wire from the right motor to the screw terminal
on the Motor Controller labeled MOTOR1 P16

7.	 In this project, you’ll use an Android app to control the
rover via Bluetooth. You can find the code that runs on
the micro:bit at http://www.bittysoftware.com/downloads.
html#controller. Click the link micro:bit hex file for

http://www.bittysoftware.com/downloads.html#controller
http://www.bittysoftware.com/downloads.html#controller

CHAPTER 6162

Kitronik Buggy - no pairing required and download
the hex file. This file is also available with the book down-
loads in the Other Downloads folder. Next, connect the
micro:bit to your computer with a USB and copy the down-
loaded hex file onto your micro:bit. You won’t need batter-
ies just yet.

8.	 To install the app on your Android phone, open Google
Play and search for Bitty Controller. You’ll have to pay a
few dollars for the app. Download and install the app.

9.	 We’re one step away from trying out the project! Put four
AA batteries into the battery box. These will power both
the motors and your micro:bit, meaning you can discon-
nect the USB cable—it’s time to set your rover free.

Open the Bitty Controller app (Figure 6-27) and click
Scan. This should find your micro:bit. In Figure 6-27, it’s
called BBC micro:bit [gaviv]. Click this and the RC-style
controller of Figure 6-28 should appear. The micro:bit’s
display should also show a C, indicating that it’s connected
to your phone.

Figure 6-27: Starting Bitty Controller

Mad Movement 163

Figure 6-28: The Dual D-Pad Controller

Use the top and bottom square buttons to control the for-
ward and backward motion of the rover. To turn the rover left
and right, use the left and right round buttons.

For a first test, do something simple: flip the rover onto its
back and use the app to control the wheels. Do they spin? Once
the rover passes that test, put it on the floor and try driving it
around. If you don’t like the controller layout, head to Options
on the Bitty Controller app to find other layouts.

The rover may move forward when you tell it to go back-
ward and vice versa. If this happens, your wires are swapped:
switch the red and black wires for motor 1 and motor 2. If
your rover drives around in a circle, swap one of the pairs of
wires on one of the motors.

When you want to turn off your rover (a good way to make
your batteries last longer), just lift one end of one of the batteries
out of the battery holder. Ta-da! Now you have a crude switch.

How It Works: Motors and the Flow of Electricity
The direction of the gear motors is controlled by the direction of
the current flowing through them—if you reverse the direction,
you reverse the motors. As you can see in Figure 6-29, a motor

CHAPTER 6164

turns clockwise if connection A is positive and connection B is
negative. If A and B are reversed, so that A is negative and B is
positive, the motor moves the other way.

Clockwise

–+

A B

Counterclockwise

+–

A B

Figure 6-29: Controlling the direction of a motor

The Kitronik Motor Controller contains a chip that con-
trols the direction of current in two motors. It also supplies the
relatively high current that the motors need.

Summary
We covered a lot of ground in this chapter. First, we learned
about servomotors and how to set one up using the micro:bit.
Then, we built two complex projects: the animatronic head and
the remote-controlled rover. Along the way, we learned about
PWM and current flow and picked up a few basic program-
ming tricks to boot.

Now that you know how to make things move, you can
start thinking about other projects you’d like to make. What
things would you like to have move all on their own? In the
next chapter, we’ll look at how to deal with time.

7
TIME TRAVEL

kay, so we won’t actually build a time
machine in this chapter, but you’ll
measure time by making a binary

clock and a clock that can speak. We’ll
also conduct an experiment to test how well your
micro:bit can keep time. All the experiments and
projects in this chapter use MicroPython only.

CHAPTER 7166

Experiment 9: Keeping Time
The aim of this experiment is to make a micro:bit clock that
keeps good time. That means programming the micro:bit to
tick at precisely one-second intervals.

One way to do this would be to use the sleep function,
as in the code shown here. Note that this code is not a full
program, so don’t try to run it. The sleep command stops the
micro:bit from doing anything for however long you specify. In
our case, the delay is 1,000 milliseconds (1 second).

seconds = 0

while True:
 sleep(1000)
 seconds += 1

In this example, after each 1 second delay, the program
adds 1 to the seconds variable, which counts the number of sec-
onds that have passed. This loop repeats indefinitely and, as a
way of marking time, works for a bit.

Time Travel 167

The problem is that the clock will gradually fall behind
because we haven’t accounted for the time it takes the micro:bit
to add 1 to the seconds variable. In this example, adding 1 to
the variable won’t take much time at all, but if the program got
any longer—for example, by telling the clock to also display the
time or even speak the time, which we’ll try later—then the
delay could become significant. It would also be unpredictable,
as the time lost may not be the same every time the program
loops.

Therefore, a better way to keep time is to use the running
_time function. This function returns the number of millisec-
onds that have passed since the micro:bit was last reset, and
it’s not affected by how long other parts of your code take to do
things.

In this experiment, we’ll use the running_time function to
calculate just how slow or fast our micro:bit clock runs.

What You’ll Need
To carry out this experiment, you just need two things:

Micro:bit

USB cable

Construction
1.	 Find the code at https://github.com/simonmonk/mbms/.

The Python file for this experiment is Experiment_09.py.
Open the program in Mu and flash it onto your micro:bit.

2.	 Once you’ve successfully programmed the micro:bit, press
button B. You should find that the micro:bit sets the sec-
onds to 0 and starts counting up from there.

3.	 Set a timer on your phone or another device for exactly
16 minutes 40 seconds. Start the timer and, at the same
time, press button B to reset the micro:bit’s second count.
At the end of the timed period, press button A to freeze the
clock and make a note of the number of seconds displayed.

Because this experiment is all about timing, it’s impor-
tant to start the timer at exactly the same time that button B
is pressed and to press button A as soon as the timer sounds.

https://github.com/simonmonk/mbms/

CHAPTER 7168

This will be easier if a friend helps: one of you can operate the
timer, while the other operates the micro:bit.

The reason for setting the timer to 16 minutes 40 seconds
is that this is 1,000 seconds. If the micro:bit’s second count is
greater than 1,000, then the clock is running fast, and if the
count is less than 1,000, the clock is running slow. My micro:bit’s
second count was 989, indicating that the micro:bit’s internal
clock was running about 11 parts in 1,000 too slow.

Make a note of your micro:bit’s second count. You’ll use it in
the projects in this chapter to make your clock more accurate.

Code
Here is the MicroPython code for Experiment 9:

from microbit import *

seconds = 0
last_time = 0

while True:
 now = running_time()
 elapsed_ms = now - last_time
 if elapsed_ms >= 1000:
 seconds += 1
 last_time = now
 if button_a.was_pressed():
 display.scroll(str(seconds))
 if button_b.was_pressed():
 seconds = 0
 display.show("0")
 sleep(100)
 display.clear()

The program uses two variables:

last_time  Keeps track of the last time that the clock
ticked
seconds  Keeps track of the number of seconds that have
passed since the micro:bit was last reset and the clock
started running

I find it useful to think of the clock ticking, like a regular
clock. That is, it does something at regular intervals.

Time Travel 169

The main while loop uses the running_time function to find
out how long the micro:bit has been running in milliseconds. It
stores that number in a variable called now. It then calculates
how many milliseconds have elapsed since the last tick by sub-
tracting last_time from now.

If the number of milliseconds elapsed is greater than
or equal to 1,000—in other words, greater than or equal to
1 second—then the seconds variable increases by 1. Then we
reset the number of milliseconds elapsed to 0 so we can count
elapsed time over again.

We use two if statements to program button A and button B.
If you press button A, the micro:bit will display seconds, or the
time that’s passed since the program started running. If you
press button B, the seconds count will reset to 0.

How It Works: Keeping Time
The micro:bit’s processor uses a crystal oscillator (an elec-
tronic component used to keep time accurately) that should
be accurate to better than 30 parts per million. However, for
my micro:bit, it was inaccurate by 11,000 parts per million for
some reason.

To get a truly accurate clock, you’d need to use a dedicated
RTC (Real Time Clock) chip and separate crystal oscillator.
At the time of writing, no RTC chips are available specifically
for the micro:bit. Although they can be made to work with the
micro:bit, this is a fairly tricky process. Therefore, it’s probably
best not to rely too much on either of the clocks you’ll build
in this chapter, but these projects are fun and will teach you
important skills.

Project: Binary Clock
Difficulty: Easy

In this project, shown in Figure 7-1, you’ll create a clock that
shows you the time in binary. Binary is a numbering system
used in computers. You can learn more about it in the “How
It Works: Telling the Time in Binary” on page 176. A binary
clock displays hours, minutes, and seconds as separate binary
numbers on the micro:bit’s LED display.

CHAPTER 7170

Figure 7-1: The binary clock in the Kitronik MI:Pro case

Figure 7-2 shows the binary numbering system on the
micro:bit. It might seem confusing at first, like a random pat-
tern of LEDs, but I’ll explain how it works shortly. Plus, the
Mad Scientist loves to show off their skill at reading binary
clocks to impress their friends!

32

32

16 8 4 2 1 Hour
(11)

Minute
(5)

Second
(3)

Figure 7-2: Reading the binary clock

Time Travel 171

How to Read the Binary Clock
Our binary clock is a 24-hour clock. To read the clock, start
at the top row of LEDs, shown in Figure 7-2. This row repre-
sents the hours. Each column of LEDs stands for a number.
From right to left, the columns represent the numbers 1, 2, 4,
8, and 16. By adding these five numbers, you can create every
possible value between 1 and 24. To work out the hour, add
the column numbers for the LEDs that are lit. In the case of
Figure 7-2, that’s 1, 2, and 8, which add up to 11. So, the hour
is 11.

The next two rows represent the number of minutes, and
the bottom two rows represent the number of seconds. Both
minutes and seconds are indicated by a row with the same
1, 2, 4, 8, and 16 LEDs. However, since we need to be able to
count all the way to 60 for minutes and seconds, these values
are indicated by an additional LED (worth 32) on the preced-
ing row. As shown in Figure 7-2, the 32 LED for minutes is the
leftmost LED on the second row from the top, and the 32 LED
for seconds is the leftmost LED on the fourth row from the top.

In Figure 7-2, the 4 and 1 minute LEDs are lit, indicating
5 minutes. The 2 and 1 second LEDs are lit, indicating 3 sec-
onds. All together, this display is saying the time is 11:05:03.

Holding down button A will make the numbers on the
clock advance very quickly, allowing you to set the time. You
just need to be ready to stop the clock as soon as it reaches the
correct time.

You can see a video of the clock in operation, including how the
time is set, at https://www.youtube.com/watch?v=v26gYo5OG0g.

What You’ll Need
For this project, all you need is your micro:bit and a power
source.

If you plan to keep your clock running constantly, then
you should use a USB power adapter or other long-term power
source for the micro:bit (see the appendix) to save on batter-
ies. You might also want to get a case for the micro:bit to make
your clock look nicer.

Remember that the clock won’t keep perfect time, so you’ll
need to reset it fairly often.

https://www.youtube.com/watch?v=v26gYo5OG0g

CHAPTER 7172

Construction
1.	 The code for this project is in MicroPython, because the math

required would be extremely tricky to do in the Blocks code.
Download the code from https://github.com/simonmonk/
mbms/. The file for this project is ch_07_Binary_Clock.py.

2.	 Before loading the program onto your micro:bit, open it
in Mu and change the current time so it’s accurate. You
should probably set it to a few minutes before the current
time, just to be safe. You can adjust it later by holding
down button A.

Change the time by altering the following lines.
Remember that this is a 24-hour clock, so, for example,
6:00 pm is 12 + 6 or 18 hours.

hours = 8
minutes = 25

You should also change the value of the adjust vari-
able to the number of parts per thousand by which your
micro:bit’s clock is slow or fast. My micro:bit ran slow by
11 seconds in 1,000, so I set adjust to –11 to speed it up a
little (note the negative sign). If the micro:bit had run fast
by, say, 10 seconds per 1,000, then I would have set adjust
to 10 to slow things down a tiny amount.

Code
This project involves quite a lot of math. We’ll also use
some more advanced programming features, such as two-
dimensional arrays, which are much easier to implement in
Python than in Blocks code.

Let’s break the code into chunks, starting with the lines
that assign the correct binary values to each LED:

hhhhh
m
mmmmm
s
sssss

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Time Travel 173

sec_leds = [[4, 4], [3, 4], [2, 4], [1, 4], [0, 4], [0, 3]]
min_leds = [[4, 2], [3, 2], [2, 2], [1, 2], [0, 2], [0, 1]]
hour_leds = [[4, 0], [3, 0], [2, 0], [1, 0], [0, 0]]
adjust = -11

The first four lines of code aren’t actually part of the pro-
gram. They’re comment lines, or notes, reminding you which
LEDs display the hours, minutes, and seconds. These can
serve as a useful reference when setting the LED coordinates
in the arrays that follow.

The next three lines are the two-dimensional arrays men-
tioned earlier. These assign the proper LED coordinates to the
seconds, minutes, and hours. Remember that arrays are like
variables, except they hold multiple elements. The arrays we’re
using here are called two dimensional because their elements
are also arrays. For example, the first element in the first
array, sec_leds, is [4, 4]. This identifies the first LED used to
display the number of seconds as the LED with an x coordi-
nate of 4 and a y coordinate of 4. That’s the LED in the bottom
right corner of the display. Figure 7-3 shows the coordinates of
the individual LEDs that make up the display.

0, 0 x

y 4, 4

Figure 7-3: LED display coordinates

As you can see, the top left LED has the coordinates [0, 0]
and the bottom right [4, 4].

CHAPTER 7174

Next, we have the hours, minutes, and seconds variables to
keep the current time:

hours = 8
minutes = 25
seconds = 1
adjust = -11

We’ll use the adjust variable to correct the clock’s speed. See
“Construction” on page 167 if you’re not sure how to do this.

Here is the function that turns the LEDs on or off to indi-
cate a value in binary:

def display_binary(value, num_bits, leds):
 v = value
 for i in range(0, num_bits):
 v_bit = v % 2
 display.set_pixel(leds[i][0], leds[i][1], int(v_bit * 9))
 v = int(v / 2)

We have three separate binary numbers (hours, minutes,
and seconds) to display, and the display_binary function works
for all of them. It takes a number to display (value), the num-
ber of LEDs to use in displaying the number (num_bits), and
an array of LEDs to use (leds). It uses these three values to
display the three parts of the time—the seconds, minutes, and
hours—on the micro:bit.

To keep track of the time, you use two variables:

last_time = 0
tick = 1000 + adjust

Time Travel 175

The variable last_time records the last time that the clock
ticked, and the variable tick holds the duration of the clock’s tick
in milliseconds. The default value for tick is 1,000 + adjust, but
this value will change when you press button A to set the time.

Here is the code to update the time:

def update_time():
 global hours, minutes, seconds
 seconds += 1
 if seconds > 59:
 seconds = 0
 minutes += 1
 if minutes > 59:
 minutes = 0
 hours += 1
 if hours > 23:
 hours = 0

The function update_time adds 1 to the number of seconds
every time it is called. When the seconds count gets past 59,
it resets to 0 and increases the number of minutes. It does
the same thing for the hours. We use nested if statements to
accomplish this.

This is the code to display the hours, minutes, and seconds
in binary:

def display_time():
 display_binary(seconds, 6, sec_leds)
 display_binary(minutes, 6, min_leds)
 display_binary(hours, 5, hour_leds)

We put this code inside the display_time function, which
calls the display_binary function defined earlier.

Here is the main while loop that makes the clock run
quickly when someone presses button A and normally other-
wise. It also contains the code to keep time.

while True:
 if button_a.is_pressed():
 tick = 10
 else:
 tick = 1000 + adjust
 now = running_time()
 elapsed_ms = now - last_time

CHAPTER 7176

 if elapsed_ms >= tick:
 update_time()
 display_time()

The first part of the loop checks whether button A is being
pressed. If it is, the code reduces tick to 10 milliseconds. Oth-
erwise, it sets it to 1000 + adjust.

Finally, we write the code that allows the clock to keep
time. The function running_time returns the number of mil-
liseconds since you last reset your micro:bit. Each time the
program loops, we calculate how much time has elapsed since
the clock last ticked. The loop does the following:

1.	 Gets the current running_time and stores it in a variable
called now

2.	 Calculates the value for elapsed_ms by figuring out the dif-
ference between the variables now and last_time

3.	 Updates the time if elapsed_time is greater than our tick
time of 1 second

4.	 Sets last_time to now, resetting the millisecond count to zero

How It Works: Telling the Time in Binary
Using this binary clock to tell the time is a little tricky. It’s
especially hard to figure out the seconds, which are likely to
have changed before the code has calculated them. But there’s
a reason the binary system exists.

Most of us are familiar with the decimal system of writ-
ing numbers. Decimal is the Latin word for 10, and in the
decimal system, we use 10 different symbols (the digits 0
through 9). If we need to write a number greater than 9—say
15—then we use two digits. Because of the position of the 1
in the number 15, we know that it actually represents the
number 10.

The following table shows the numbers from 0 to 10 in
binary. Note that in decimal, we don’t write leading zeros. We
wouldn’t write 15 as 0015, for example. In binary, however, it’s
customary to write numbers with the leading zeros to give the
numbers the same number of digits. That’s just the way com-
puter scientists roll. So in this case, all the binary numbers
are four digits long.

Time Travel 177

Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

In theory, computers could store numbers like this by using
10 different voltages to represent the digits 0 to 9, but they don’t.
Instead, computers use a system called binary. Rather than
having 10 possible values for a digit, a binary digit (also called
a bit) can represent either a 0 or a 1. Computers use binary
because the transistors they are made with are really good at
being either off (0) or on (1). That means they have only 2 pos-
sible states, which is much easier than giving them 10 possible
states. Also, the math behind binary logic means that a com-
puter can do reliable arithmetic on binary numbers far more
easily than it were dealing with numbers in decimal.

Just as in the familiar decimal system, the binary system
combines digits to represent bigger numbers. Whereas each
digit position in a decimal number increases by a factor of 10—
going from 1, to 10, to 100—each binary digit increases by a
factor of 2—from 1, to 2, to 4, and so on. For example, the four-
digit binary number 1010 has 1s in the 16- and 2-digit positions
and 0s in the other positions. In decimal, it’s 16 + 2, or 18.

It turns out that you don’t need very many binary digits
to represent some pretty big numbers. For example, eight
binary digits put together (called a byte) can represent a
decimal number anywhere between 0 and 255. Make that
16 bits, and the number goes up to 65,535. A computer
with 64 bits is able to do everything using those binary
64 digits, and it can represent a number between 0 and
18,446,744,073,709,551,615. Incidentally, a micro:bit has a

CHAPTER 7178

32-bit processor, able to represent numbers between 0 and a
very respectable 4,294,967,295. The MicroPython function
running_time that we’ve been using uses a 32-bit number. This
means that it will not run out of numbers for 4,294,967,295 ÷
1,000 ÷ 60 ÷ 60 ÷ 24 = 49.7 days.

Project: Talking Clock
Difficulty: Easy

Sometimes the Mad Scientist is so busy with test tubes and
chemicals and alarming plumes of smoke that they can’t check
the time. And then they forget to eat! That’s when a talking
clock comes in handy. This project (Figure 7-4) announces the
time every hour, or whenever you press button A.

Figure 7-4: A talking clock

You can see this project in action at https://www.youtube
.com/watch?v=iNjXEK8RUtU.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

3 × Alligator clip cables  To connect the micro:bit to
the speaker
Speaker for micro:bit  To play the sounds (Use a Monk
Makes Speaker or see Chapter 2 for other speaker options.)
Power adapter  See the appendix for options on keep-
ing your micro:bit powered without batteries.

https://www.youtube.com/watch?v=iNjXEK8RUtU
https://www.youtube.com/watch?v=iNjXEK8RUtU

Time Travel 179

If you’re planning to keep your clock running, then use
a USB power adapter or another long-term power solution to
save on batteries.

You may want to build a case for the clock or attach the
micro:bit and speaker to the same piece of cardboard you used
for the light-controlled guitar project from Chapter 3.

Construction
1.	 The code for this project is in MicroPython, as the speech

library is not currently available in the Blocks code. Down-
load the code from https://github.com/simonmonk/mbms/.
The file for this project is ch_07_Talking_Clock.py.

2.	 Before loading the program onto your micro:bit, open the
file in Mu and change the hours and minutes to your cur-
rent time. Also change adjust to the amount by which you
want to adjust your clock. See “Construction” on page 167
of the binary clock project if you’re not sure how to do this.

3.	 Connect a speaker to the micro:bit with one alligator clip on
pin 0 and the other alligator clip on the pin marked IN on
the speaker. Use the other two clips to provide power to the
speaker, as shown in Figure 7-4.

4.	 Wait for the time you set in step 2 to arrive. Then connect
the micro:bit to a power source. Note that for this project,
there is no other mechanism to set the time.

Code
For clarity, we’ll work through this code in sections.

Here’s the code that does the time keeping—in other
words, that makes sure the hours and minutes are correct.
It’s almost the same as the time-keeping code from the
previous project. The main difference is that, instead
of showing the time on the LED display, the code will
speak the current time.

digits = ["no", "1", "2", "3", "4”, "5", "6", "7", "8", "9",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nienteen"]
tens = ["no", "no", "twenty", "thirty", "forty", "fifty"]

https://github.com/simonmonk/mbms/

CHAPTER 7180

preamble = "The time is "
am = "aye em"
pm = "pee em"

We use several variables and arrays to hold a set of words
that the micro:bit will speak.

The speech library contains recordings of some common
words. It can say single digits like 1, 2, or 3, but for numbers
10 and over, it pronounces each digit separately, which is not
what we want our talking clock to do. That’s why we have
to spell out numbers greater than 10. Notice that nineteen is
misspelled as nienteen to make it sound right when the syn-
thesized voice says it. The array called digits holds the text
for each number up to 19. The clock should never speak the 0
digit, so we just set it to the word no.

The tens array does a similar job with numbers that are
multiples of 10. We already accounted for all the numbers up
to 19 with the digits array, so we don’t need to worry about the
first two elements in the tens array, which will never be spo-
ken. We set these to no as well.

The preamble variable contains the text that the micro:bit
will speak before it announces each time. The am and pm vari-
ables contain phonetic versions of the am/pm indicator. The
micro:bit will speak one of these after reading the time.

Here’s the code with the function that actually speaks the
time. Appropriately enough, it’s called speak_the_time.

def speak_the_time():
 h = hours
 am_pm = am
 if h >= 12:
 am_pm = pm
 if h > 12:
 h = h - 12
 if minutes == 0:
 # The time is twelve pm exactly
 speech.say(preamble + digits[h] + " "
 + am_pm + " exactly")
 else:
 if minutes < 10:
 # The time is twelve o four pm
 speech.say(preamble + digits[h] + " o "
 + digits[minutes] + " " + am_pm)

Time Travel 181

 elif minutes < 20:
 # The time is twelve eighteen pm
 speech.say(preamble + digits[h] + " "
 + digits[minutes] + " " + am_pm)
 else:
 mins_tens = int(minutes / 10)
 mins_units = minutes % 10
 if mins_units == 0:
 # The time is twelve twenty pm
 speech.say(preamble + digits[h] + " "
 + tens[mins_tens] + " " + am_pm)
 else:
 # The time is twelve twenty four pm
 speech.say(preamble + digits[h] + " "
 + tens[mins_tens] + " " + digits[mins_units] + " " + am_pm)

This function is fairly complex, as it has to account for our
different ways of expressing the time.

This clock speaks in the 12-hour format but stores the
hours in 24-hour format, so the first thing speak_the_time does
is decide whether the time is am or pm. It subtracts 12 from the
hour variable once hour reaches 13.

Next, the nested if statements cover the following possible
cases:

XX If the time is exactly on the hour, say something like The
time is twelve pm exactly.

XX Otherwise, if the minutes are less than 10, add an o, to
say something like The time is twelve o four pm.

XX For two-digit minutes less than 20, use the digits array
and say something like The time is twelve eighteen pm.

XX For other two-digit minutes of 20 or over that are mul-
tiples of 10, use the tens array to say something like The
time is twelve twenty pm.

XX And, where the minutes are not multiples of 10, say some-
thing like The time is twelve twenty four pm.

Last comes the main while loop:

while True:
 if button_b.is_pressed():
 speak_the_time()
 now = running_time()

CHAPTER 7182

 elapsed_ms = now - last_time
 if elapsed_ms >= tick:
 elapsed_seconds = int(elapsed_ms / tick)
 update_time(elapsed_seconds)
 blink()
 last_time = now

This loop checks whether button B has been pressed or
an hour has passed and speaks the time if either event has
occurred. It also calls a function called blink. That flashes the
heart icon on the screen to reassure you that the clock is work-
ing, even if it is silent most of the time.

How It Works: Teaching the Micro:bit to Speak
The MicroPython speech library opens up all sorts of pos-
sibilities in your projects, as you saw back in Chapter 6. The
sound quality isn’t perfect, but it does add loads of fun to
your projects.

The speech library itself is based on the concept of
phonemes: building blocks of sound. When you use the say
function, the text to be spoken is first translated into a series
of phonemes. Because of the strangeness of spoken language,
this often doesn’t work perfectly—hence the misspelling of
nineteen in the code for this project to help the say function
pronounce the word more accurately.

You can read much more about this speech library
at https://microbit-micropython.readthedocs.io/en/latest/
tutorials/speech.html.

Summary
Hopefully you now have a good sense of how to make a
clock using a micro:bit and use it to display or literally
tell you the time.

In the next chapter, the Mad Scientist turns their atten-
tion to psychological experiments.

https://microbit-­micropython.readthedocs.io/en/latest/tutorials/speech.html
https://microbit-­micropython.readthedocs.io/en/latest/tutorials/speech.html

8
MAD SCIENTIST

MIND GAMES

n this chapter, the Mad Scientist turns their
attention to the source of their genius—the
mind! First, you’ll learn about your nervous
system by testing how long it takes to react

to stimuli. You’ll then build a lie detector that
measures galvanic skin resistance, one of the
factors used in polygraph tests. Use it on your
friends. If they get warm and sweaty when you
question them, they might be lying to you!

CHAPTER 8184

Experiment 10: How Fast Are
Your Nerves?
Difficulty: Medium

People process stimuli with nerve cells, or neurons. Nerves are
the wiring of the human body, carrying signals from the brain
to the rest of the body and back. When you touch a hot stove,
you seem to feel the pain right away. But compared to the copper
wires in most electronics, nerves actually work pretty slowly.

By measuring the time it takes your brain to respond to a
signal, you can estimate how fast that signal travels through
your nerves. In this experiment, you’ll press button A with
either your hand or your foot whenever the micro:bit screen
goes blank, and the micro:bit will measure the time it takes
you to react.

We’ll make a cardboard pedal to go around the micro:bit
so you can press the button without hiding the display
(Figure 8-1).

Figure 8-1: Turning a micro:bit into a foot-operated switch

Mad Scientist Mind Games 185

What You’ll Need
For this project, you’ll need:

Micro:bit

Piece of cardboard about 8 inches × 4 inches (20 cm
× 10 cm)  Thick, strong cardboard works best. It doesn’t
need to be exactly these dimensions.
Craft knife  To cut and score the cardboard
Blu-Tack adhesive putty  To attach the micro:bit to
the cardboard

Construction
We’ll start by creating a cardboard pedal that will fold in half
around the micro:bit.

1.	 Draw two parallel lines roughly halfway down the card-
board and about 1/4 inches (5 mm) apart, as shown in
Figure 8-2. You’ll fold the cardboard along these lines.
Also, mark the rectangular part of the cardboard you
want to cut out. Make sure the hole you’ll make is big
enough for the micro:bit’s screen.

CHAPTER 8186

2.	 Draw your knife along the lines for the hinges, cutting
only about halfway through the cardboard. This is called
scoring the cardboard. Be careful not to cut all the way
through. Then cut out the rectangle you marked.

Figure 8-2: Making the hinge and cutting out a place for the
micro:bit display

WARNING 	 Using a craft knife can be dangerous! For
this part of the project, a responsible adult should use the craft
knife or at least supervise.

3.	 Place the micro:bit inside the folded cardboard so you
can see its screen. Stick small pieces of Blu-Tack to the
center of the micro:bit and then stick the micro:bit to the
cardboard. When you gently press the top of the hinge,
you should be able to feel button A click (see Figure 8-1).
Check that when the switch is pressed, it doesn’t also
accidentally press the Reset button on the back of the
micro:bit. If it does, try using larger pieces of Blu-Tack.

4.	 This experiment uses MicroPython only. Find the code at
https://github.com/simonmonk/mbms/ The Python file for
this experiment is Experiment_10.py. Open the file in Mu
and load it onto the micro:bit.

Testing Your Nervous System
The program that controls this experiment uses Mu’s REPL to
report results and give you instructions. (Revisit Chapter 1 if

https://github.com/simonmonk/mbms/

Mad Scientist Mind Games 187

you need a refresher on how the REPL works.) Because it uses
the REPL, this is one experiment where you’ll need to keep
your micro:bit connected to your computer using the USB cable.
We’ll use the micro:bit’s display and button A to measure reac-
tion times.

Open Mu’s REPL. The instructions in the REPL area of
the window will ask you to hold down button A whenever the
micro:bit’s display shows a cross and release it as fast as you
can when the display goes blank.

Here is what you might see in the REPL on a typical run.
The instructions are broken into sections for clarity.

TEST 1 - USING your hand
Hold the switch down while the cross is showing.
Release momentarily when the display blanks.
Repeat 5 times.
Press ENTER when ready to start the test

To start the first test run, hold down the switch with
your dominant hand and press enter once on your computer.
A cross should appear on the screen. After a random delay
of between 3 and 7 seconds, the display will go blank. When
it does, release the button as fast as you can. The REPL
should show you the number of milliseconds between when
the display went blank and when you released the switch. For
example:

252

The cross should then light for another random period, so
hold down the switch to try the test again. The experiment
should repeat a total of five times.

If you let go of the switch before the display has blanked,
the REPL should display the message You let go too soon.
This will record a time of 0, invalidating the experiment, and
you’ll have to restart the whole process. If this happens, reset
the micro:bit by unplugging its USB cable and plugging it
back in.

After you’ve completed the five tests, the micro:bit’s dis-
play should remain blank, and the REPL will show your

CHAPTER 8188

individual reaction times as well as the average of all your
times. For example:

252
264
264
282
The average time using your hand was 262.7999 ms

You should then be prompted to repeat the experiment
using your foot. Move the micro:bit pedal onto the floor. This
time, position your foot over the micro:bit and gently use it to
press the switch. Getting this right may take a little practice.

Now repeat the test for your foot. Once you’ve captured
five reaction times, the REPL should display the average, and
you’ll be prompted to enter the following two measurements,
as in this example:

The average time using your foot was 368.3999 ms
Enter the distance from the back of your neck to your fingers in
cm: 107
Enter the distance from the back of your neck to your toes in cm:
188

The program will use these measurements to calculate
how long it took your brain to realize that the display had
blanked in milliseconds—this is the thinking time. And it will
calculate the speed at which the signal traveled to your hand
or foot in meters per second—this is the transmission speed.

Thinking time (ms): 123.3036
Transmission speed (m/s): 13.03703

“How It Works: Measuring Your Reaction Time” on
page 191 will explain how these calculations are made and
just how meaningful they are (or aren’t).

Code
We use a variable n to hold the number of reaction time read-
ings to take for each test. In this case, five readings are taken.

from microbit import *
import random

Mad Scientist Mind Games 189

n = 5

def run_full_test():
 print("TEST 1 - USING your hand")
 t_hand = run_test()
 print("The average time using your hand was " + str(t_hand)
 + " ms")
 print("Now repeat the test for your foot")
 t_foot = run_test()
 print("The average time using your foot was " + str(t_foot)
 + " ms")
 d_hand = int(input("Enter the distance from the back of
 your neck to your fingers in cm: "))
 d_foot = int(input("Enter the distance from the back of
 your neck to your toes in cm: "))
 thinking_time = (d_foot * t_hand - d_hand * t_foot)
 / (d_foot - d_hand)
 transmission_speed = 10 * (t_foot - thinking_time) / d_foot
 print("Thinking time (ms): " + str(thinking_time))
 print("Transmission speed (m/s): " + str(transmission_speed))

The function run_full_test runs both the hand and foot
test in turn. (We’ll define the code for both those tests in a
bit.) The last four lines of the code are the calculations for the
thinking time and transmission speed, explained in “How It
Works: Measuring Your Reaction Time” on page 191.

This function also prompts you to enter the neck-to-hand
and neck-to-foot distances using the input function. The pro-
gram will be able to use that information because it stores the
input in variables. We store the input for the neck-to-hand dis-
tance in d_hand  and the input for the neck-to-foot distance in
d_foot .

The input function displays the string of text that you sup-
plied as its parameter and then waits for you to enter some
text. It returns whatever you type as a string, and the int
function converts that string into an integer so we can use it
in the calculation.

Here’s the code for the run_test function:

def run_test():
 print("Hold the switch down while cross is showing and
 release momentarily when the display blanks")
 print("Repeat " + str(n) + " times.")

CHAPTER 8190

 input("Press ENTER when ready to start the test")
 total = 0
 for i in range(0, n):
 t = get_reaction_time()
 if t > 10:
 print(t)
 total += t
 else:
 print("You let go too soon")
 return total / n

The run_test function runs a single test, providing the
necessary instructions and collecting the required number
of reaction time readings by calling get_reaction_time. If the
reaction time is less than 10 milliseconds, which would mean
superhuman reflexes, the program tells you that you let go too
soon. Otherwise, it displays your reaction time.

def get_reaction_time():
 display.show(Image.NO)
 sleep(random.randint(3000, 7000))
 display.clear()
 t0 = running_time()
 while pin5.read_digital() == False: # Button A down
 pass
 t1 = running_time()
 t = t1 - t0
 return t

run_full_test()

The get_reaction_time function displays the cross image
and then sleeps for a random period between 3 and 7 seconds.
It then clears the screen and sets the variable t0 to the current
running time so that the program knows when to start timing
the reaction test.

When you release button A, the program exits the while
loop and records the time at which it stops in t1. We calculate
the reaction time by subtracting t0 from t1.

You might be wondering why the code checks for button A
being pressed using pin5.read_digital rather than button_a
.is_pressed. The answer is that the is_pressed function does
not operate as quickly as read_digital and so would add some
unwanted extra time to the reaction time measurement. We use

Mad Scientist Mind Games 191

pin5 because the micro:bit’s wiring connects pin 5 directly to
button A. The micro:bit actually has a whole load of other pins
than the pins 0 to 3 that we use with alligator clips. However, in
this book we concentrate on the pins that are easy to access.

Things to Try
To perform further investigations into the human nervous sys-
tem, try comparing different people’s results or conducting the
test at different times of day.

How It Works: Measuring Your Reaction Time
When you see the cross vanish, two things happen in your
body, each of which takes a certain amount of time:

1.	 Your eyes and brain notice the change and decide to act on it.

2.	 A signal passes from your brain, through your nerves, to
the muscles that control your hand or foot, and the hand
or foot comes off the switch.

For this experiment, we assumed that the thinking time,
or the time it takes you to register the change, is the same
whether you’re moving your hand or your foot.

We also assume that the nerve signal speed between brain
and hand and brain and foot is the same. In reality, neither of
these assumptions is exactly right, but the Mad Scientist can
sort out those issues some other time.

Given those assumptions, the speed that the signal travels
through your nerves is equal to the total reaction time minus the
thinking time, divided by the distance the signal has to travel.

Taking the two distance measurements allows us to crudely
calculate both the thinking time and the signal speed. Here are
the variables we’ll use in the calculations:

t_hand  The total reaction time (thinking + acting) for
the hand
t_foot  The total reaction time for the foot
d_hand  The distance the signal has to travel along the
nerve from the brain to the hand
d_foot  The brain-to-foot distance

CHAPTER 8192

thinking_time  The time it takes to register the event and
start the message to the hand or foot
transmission_speed  The speed of the signal through the
brain to the hand or foot

Now for the math. For the hand, we can use this equation:

transmission_speed
d_hand

t_hand thinking_time
�

�� �
Similarly, for the foot, we can use this:

transmission_speed
d_foot

t_foot thinking_time
�

�� �
This means that we also know the following:

d_hand

t_hand thinking_time

d_foot

t_foot thinking_time�� �
�

�� �
Now we can use algebra to rearrange things so that we

can calculate the thinking time and transmission speed. We
can multiply both sides by this:

t_hand thinking_time�� �
And we get this:

d_hand
d_foot t_hand thinking_time

t_foot thinking_time
�

�� �
�� �

If we multiply both sides by the following:

t_foot thinking_time�� �
we get this:

d_hand t_foot thinking_time d_foot t_hand thinking_time�� � � �� �
Multiplying across the parentheses gives this:

d_hand t_foot d_hand thinking_time

d_foot t_hand d_foot th

� � �
� � � � iinking_time

So:

d_hand t_foot d_foot t_hand

d_hand thinking_time d_foot th

� � �
� � � � iinking_time

Mad Scientist Mind Games 193

d_hand t_foot d_foot t_hand

thinking_time d_hand d_foot

� � �

� �� �
Finally, we can calculate the thinking time as the

following:

thinking_time
d_hand t_foot d_foot t_hand

d_hand d_foot
�

� � �� �
�� �

Now that we have the thinking time, we can use it to cal-
culate the speed the message travels along the nerves, like this:

transmission_speed
t_foot thinking_time

d_foot
�

�� �

This result will be in centimeters per millisecond. To con-
vert the value into meters per second, we multiply by 1,000
and divide by 100. In other words, multiply by 10, and you’ve
got the transmission speed.

Project: Lie Detector
Difficulty: Medium

The Mad Scientist doesn’t like surprise parties, and they want
to figure out whether their lab assistants are planning one for
their birthday. They’ll have to use their lie detector (Figure 8-3)
to figure it out!

Figure 8-3: Lie detector

CHAPTER 8194

This project measures galvanic skin resistance (GSR),
which is the resistance of the skin to the flow of electricity. To
measure GSR, we’ll use a micro:bit, and a pair of metal spoons.

What You’ll Need
For this project, you’ll need the following:

Micro:bit

2 × Alligator clip cables  To connect the spoons to the
micro:bit
2 × Spoons

You’ll use the spoons to make contact with the palms of your
hands. The alligator clips will attach to the spoons’ handles and
might scratch them, so don’t use your best spoons!

Construction
1.	 Go to https://github.com/simonmonk/mbms/ to access the

book’s code repository and click the link for Lie Detector.
Once the program has opened, click Download and then
copy the hex file onto your micro:bit. If you get stuck, head
back to Chapter 1 for a refresher on loading programs onto
your micro:bit.

If you prefer to use Python, then download the code
from the same website. For instructions for download-
ing and using the book’s examples, see “Downloading the
Code” on page 34. The Python file for this experiment is
ch_08_Lie_Detector.py.

2.	 Use one alligator clip to connect the handle of one of the
spoons to pin 2 and the other alligator clip to connect the
other spoon to GND, as shown in Figure 8-3.

To use the lie detector, you need two people: an operator
to ask the tricky questions and a subject to answer them. The
subject needs to hold the spoons so that the curved side makes
full contact with the palms of their hands.

When the operator presses button A, the dot on the micro:bit’s
display should move to the center of the LED. If skin resistance
falls because the subject gets sweaty, the dot will move up the
screen. If skin resistance rises, the dot will move down.

https://github.com/simonmonk/mbms/

Mad Scientist Mind Games 195

If the dot seems to be stuck at the top or bottom, the opera-
tor needs to press button A to center the display. The readings
will gradually drift, even without any difficult questions.

After asking a question, the operator should wait three or
four seconds before checking the reading on the display.

Code
This project has both Blocks and Python code. The full expla-
nation follows the Blocks code, so if you skip to the Python
code now, make sure to return to read the explanation.

Blocks Code
Here is the Blocks code for this project.

CHAPTER 8196

In the on start block, we place the block set pull pin,
which enables the built-in 12kΩ pullup resistor. (The pullup
resistor is disabled by default.)

Also in the on start block, we take a reading from pin 2, con-
nected to one of the spoons, and store the result in the baseline
variable. The program will compare any new readings against
this baseline to see how much the subject’s skin resistance has
changed.

We then use the forever loop to take a new analog reading
from pin 2 that represents your subject’s GSR after answering
a question you’ve asked. The loop subtracts the baseline read-
ing from the new reading and divides the result by 10 to reduce
it by about the right amount.

It uses this number to determine which of the five LEDs
should light up. The number must fall within the range of –2
to 2 or an error will occur. Once this is done (using a couple of
if blocks), the display is cleared, and the middle-column LED
on the row 2 + change is lit using the plot block.

Pressing button A resets the baseline.

MicroPython Code
The MicroPython version of the code is shown here:

from microbit import *

pin2.set_pull(pin2.PULL_UP)
baseline = pin2.read_analog()

Mad Scientist Mind Games 197

while True:
 if button_a.was_pressed():
 baseline = pin2.read_analog()
 reading = pin2.read_analog()
 change = int((reading - baseline) / 10)
 if (change > 2):
 change = 2
 if (change < -2):
 change = -2
 display.clear()
 display.set_pixel(2, 2 + change, 9)

This works in much the same way as the Blocks code, with
just a few differences. Here, we use the int function to convert
the change in the reading values into an integer.

We then use the set_pixel method to tell the micro:bit dis-
play which LED to light up. This method is different from the
plot block because it not only asks for the x and y coordinates
but also requires you to provide a brightness level between 0
and 9. We choose 9 to make it as bright and visible as possible.

How It Works: Detecting Lies Through Sweat, Voltage,
and Resistance
Skin resistance is one of the measurements used by polygraph
lie detectors so often seen in movies.

If you flush or start to sweat, as you might when under
pressure, your skin’s resistance to electricity changes. But
testing for GSR might not always work. The questions you ask
and how you ask them can influence a person’s reactions or
make them feel nervous, and GSRs will differ from person to
person. Conversely, people who are more detached from their
feelings can learn how to defeat the polygraph. But for the
Mad Scientist’s investigation into a possible surprise party,
this lie detector is just the ticket.

This project converts readings of GSR into a voltage. Most
metals have low resistance because metal conducts electric-
ity well, whereas something like plastic has a high resistance
because electricity does not generally flow well through plastic.
We measure resistance using a micro:bit’s pin, which works as
an analog input (see Chapter 1) and an arrangement of two
resistors called a voltage divider (Figure 8-4).

CHAPTER 8198

12kΩ

Skin
micro:bit

GND

3V

Pin 2

Figure 8-4: Schematic of a voltage divider

The unit of resistance is the ohm (Ω), and we normally
abbreviate 1,000Ω to 1kΩ. In Figure 8-4, the 12kΩ resistor
connected to pin 2 is a resistor built into the micro:bit’s proces-
sor. This resistor pulls the voltage at pin 2 toward 3V (think of
the resistors in this diagram as springs); if you weren’t holding
onto the spoons, this pull would be the only force acting on the
pin, and the pin would register a maximum reading of 1023,
or 3V.

However, as soon as the subject grasps the spoons, another
resistor—the subject’s skin—comes into play. This counters
the 12kΩ resistor by pulling the voltage at pin 2 back toward
0V. If your skin resistance was exactly 12kΩ, then the two
resistances would be pulling equally, and the voltage at pin 2
would be 1.5V.

If the subject sweats, their skin resistance falls, pulling the
voltage lower. Conversely, when they recover, their skin resis-
tance increases, allowing the 12kΩ resistor to pull the voltage up.

Summary
In this chapter, we conducted a few experiments on the human
nervous system. The experiment and project we completed
may have dubious scientific rigor, but hopefully you enjoyed
yourself along the way.

In the next chapter, we’ll take measurements of the envi-
ronment. Specifically, we’ll work with light and temperature,
which are important to the Mad Scientist’s comfort.

9
ENVIRONMENTAL

MADNESS

he Mad Scientist loves to measure things.
In this chapter, we’ll follow in the scientist’s
footsteps by measuring the temperature.

We’ll devise a temperature and light logger
that will provide valuable insights into our environmental
experiments. Then we’ll create a plant-watering project
that uses a small pump to water a houseplant
automatically when its soil starts to dry out.

CHAPTER 9200

Experiment 11: Measuring
Temperature
Difficulty: Easy

Owning no clothes besides lab coats and having skimped
on the insulation budget for the Secret Laboratory, the
Mad Scientist decided to build a custom heating system.
To do this, they needed to know the exact temperature in
every room of the lab. Unfortunately, they soon found the
measurements taken with their micro:bit were not exact
enough.

The micro:bit has a function named temperature in both
the Blocks and MicroPython code that returns a temperature
reading in degrees Celsius. However, the sensor itself is built
into the micro:bit’s processor and thus is actually reporting the
temperature of the micro:bit’s chip, not the temperature of the
micro:bit’s surroundings.

At normal room temperature of around 20 degrees C
(68 degrees F), if the micro:bit hasn’t been running for too
long, the sensor gives a fairly accurate reading. However, we
can’t be sure whether the temperature reading is correct if the
micro:bit’s processor has been busy and started warming up.

In this experiment, you’ll investigate the difference
between the temperature readings of a busy micro:bit and
an idle micro:bit.

What You’ll Need
To do this experiment, you’ll just need two things:

Micro:bit

USB cable

You may also want a separate thermometer to check your
readings against. The only other thing you’ll need is some
patience, as you’ll need to leave this program running for half
an hour to get good readings.

Environmental Madness 201

Construction
1.	 This project uses Mu’s Plotter feature, which you’ll need

Python for, so there’s no Blocks code for this. Find the code
at https://github.com/simonmonk/mbms/. The Python file
for this experiment is Experiment_11.py. Flash the pro-
gram onto your micro:bit.. This code will take temperature
readings every 20 seconds. It will also initiate micro:bit
activity every 10 minutes and then idle for 10 minutes, let-
ting you see the difference in temperature between when
the micro:bit is busy and when it’s idle.

2.	 Open both the REPL and Plotter views of Mu and press
Reset on the micro:bit to start the reading process. A new
temperature reading, and an indication as to whether the
micro:bit has been busy or idle, are logged to the Plotter
and REPL every 20 seconds. The busy/idle status of the
micro:bit flips every 10 minutes. Figure 9-1 shows the
result of logging the data for 40 minutes.

Figure 9-1: Plotting temperature readings and processor activity

The blue line shows the temperature reported by the
temperature function, and the green line indicates whether the

https://github.com/simonmonk/mbms/

CHAPTER 9202

micro:bit is busy or idle. When busy, the micro:bit turns on the
display and its radio interface, and it displays the message
Busy over and over.

As you can see from Figure 9-1, when the micro:bit is in
busy mode, the reported temperature rises by about 3 degrees C.
When it goes back to idle mode, the temperature drops. Note
that the temperature in the room, as measured by a separate
thermometer, remained at 20.0 degrees C throughout the
experiment.

Code
The MicroPython code for the experiment needs to do two
things: flip the busy state (held in the variable busy) of the
micro:bit every 10 minutes and report the temperature every
20 seconds.

Setting the Variables
Our code uses the variables last_busy_flip and last_log_time to
record the last time these two things (flip and log) happened:

busy = False
last_busy_flip = 0
busy_period = 600000
last_log_time = 0
log_period = 20000

The variable busy_period specifies the time in milli
seconds between each flip between the busy and idle state;
600,000 milliseconds is equal to 600 seconds, which is
10 minutes. The variable log_period holds the time between
temperature reports; 20,000 milliseconds is equal to 20 sec-
onds. The code busy = False means the micro:bit starts off idle.

Making It Busy
If the micro:bit is in busy mode, both the display and radio are
turned on and the message Busy is displayed. Otherwise, the
radio and display are off.

Environmental Madness 203

while True:
 if busy:
  display.on()
  radio.on()
 display.show("Busy")
 else:
 display.off()
 radio.off()
 now = running_time()
 if now > last_busy_flip + busy_period:
 busy = not busy
 last_busy_flip = now
 now = running_time()
 if now > last_log_time + log_period:
 print((temperature(), busy * 10))
 last_log_time = now

In a while loop, we say that if the busy variable is True, the
micro:bit should turn the display  and radio  on. Other-
wise, they should be switched off.

Then we have two tests to see whether either a flip of the
busy status or a log to the REPL and Plotter are due: the
code checks the current runtime against the values in the
busy_period and log_period variables.

To easily see when the processor is busy on the same
plot as the temperature (Figure 9-1), we multiply the True or
False Boolean value of busy by 10. Python allows us to do this!
Rather than reporting an error, Python interprets False as
0 and True as 1. Because Python treats the Boolean values
as numbers, it lets us multiply them. Then, instead of being
either 0 or 1, the value is plotted as either 0 or 10.

How It Works: Why Does a Processor Heat Up?
A processor chip, like the one used by micro:bit, contains tens
or even hundreds of thousands of transistors. These transis-
tors are electronic switches that are in either an on or off state
(represented by 1 and 0 in binary). Transistors use a very small
amount of current when they are in a particular state (either
on or off), but require a small amount of additional energy to
change states. This is why, when doing something processor
intensive, your computer fans will rev up—they’re removing the
excess heat generated by the large amount of switching.

CHAPTER 9204

A busy processor is a warmer processor. But other things
can affect the processor temperature, too. In this experiment,
the LEDs used by the display give off a little heat, as does
switching the radio on and off. So, even though our defini-
tion of busy is a little misleading because it includes turning
the radio and display on and off, the idea that the micro:bit’s
temperature readings are influenced by what the micro:bit
happens to be doing still stands.

Project: Temperature and
Light Logger
Difficulty: Medium

As a hopeless perfectionist and incorrigible botanist, the Mad
Scientist wanted a way to measure the ideal location for all
the plants in the laboratory. And so a logger of temperature
and light was born.

In Experiment 7, we wrote acceleration readings into a
file for later analysis. In that case, we wanted to take readings
immediately. Here, we want to log values over a period of time,
say over the course of a day.

Environmental Madness 205

Figure 9-2 shows the completed project. As you can see,
we have built it into a transparent food container to protect it
from the elements, in case we want to use it outdoors.

Figure 9-2: A temperature and light logger

You could use this logger to carry out a survey of your
yard and determine the best place to grow different plants.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Monk Makes Sensor for micro:bit  Another tempera-
ture and light sensor would work as well.
4 × Alligator clip cables

AAA battery pack

Transparent plastic food container  This is essential
if you want to use the project outdoors. The container
should be big enough to house the project, including the
battery pack.

CHAPTER 9206

Construction
1.	 This project uses the micro:bit’s local filesystem, which is

not available in Blocks code yet. Therefore, this project can
be done only in Python. Find the code at https://github.com/
simonmonk/mbms/. The Python file for this experiment is
ch_09_Logger.py. Flash the program onto your micro:bit.

2.	 Connect the micro:bit to the sensor board, as shown in
Figure 9-3.

Figure 9-3: Connecting the micro:bit to the Monk Makes Sensor

3.	 Place everything into the food container, making sure that
the sensor and micro:bit are at the top, near the lid. Fitting
the alligator clips from the back of the boards will help.

4.	 Turn on the battery pack. When you’re ready to start log-
ging, press button A and then put the lid on the container.
The display will change to show a single dot.

5.	 The logger can hold about 2,000 readings, so at a rate of
one sample per second, it can run for 33 hours before run-
ning out of memory. This is about how long a set of AAA
batteries should last.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/

Environmental Madness 207

When you’re ready to stop the readings, press button A
again. You can then connect the micro:bit to your computer
and use Mu’s Files feature to transfer the file data.txt onto
your computer, just as you did in Experiment 7 back in
Chapter 5.

6.	 To make sense of the data, you’ll probably want to import
it into a spreadsheet and draw some charts like the one in
Figure 9-4. See Experiment 7 in Chapter 5 for an example
of importing data from the data.txt file into Google Sheets.

Figure 9-4: Charting temperature and light

In Figure 9-4, the steep drop of the line in the light chart
indicates the nightfall.

CHAPTER 9208

Code
For this project, we’ll need to import the os library, which we’ll
use to delete any data file that might already be on the micro:bit.
We do this to make space for our new readings. We’ll also need
log from the math library to write the code that calculates the
temperature. Log (or logarithm) is a mathematical concept used
in the Steinhart-Hart equation that converts the resistance mea-
surement of a thermistor to a temperature. If you are into math,
you might like to read more about logarithms here: https://www
.mathsisfun.com/algebra/logarithms.html.

Setting the Variables
The code for this project waits for button A to be pressed and
then repeatedly takes readings first of temperature then of the
light level. Both readings are then written to a file so that when
the logging is finished, they can be transferred a computer.

sample_period = 60000
filename = 'data.txt'
temp_pin = pin1
light_pin = pin2

last_sample_time = 0
recording = False
display.show(Image.NO)

We set the variable sample_period to 60000 milliseconds,
or 1 minute. This period tells the micro:bit to take a recording
once a minute. By default, the recorded data will be saved into
a file called data.txt. You can change the name of this file by
changing the value of the filename variable.

We tell the micro:bit which two pins are connected to
the temperature and light outputs of the sensor board in the
temp_pin and light_pin variables. In the last_sample_time vari-
able, we store the last time a reading of the environment was
recorded.

We use the variable recording to keep track of the whether
the project is recording or not recording. This variable is toggled
between True and False every time button A is pressed.

https://www.mathsisfun.com/algebra/logarithms.html
https://www.mathsisfun.com/algebra/logarithms.html

Environmental Madness 209

Reading the Temperature
We create the function read_c to read the temperature. This
involves quite a lot of math.

def read_c():
 r0 = 100000.0
 r2 = 100000.0
 b = 4250.0
 v33 = 3.3 # actual result is independent of this value
 V = temp_pin.read_analog() * v33 / 1023.0
 R = r2 * (v33 - V) / V
 t0 = 273.15 # 0 deg C in K
 t25 = t0 + 25.0 # 25 deg C in K
 # Steinhart-Hart equation (google it)
 inv_T = 1/t25 + 1/b * log(R/r0)
 T = (1/inv_T - t0)
 return round(T, 1)

We won’t go into the math in detail, but it’s here in case
you want to look through it.

This function measures the voltage at the temp_pin (pin 1)
and uses that to calculate the temperature in degrees Celsius.
See “How It Works: Sensors” on page 211 for more informa-
tion on how this works.

If you want your temperatures in Fahrenheit, use the
function read_f, which calls read_c and converts the tempera-
ture to Fahrenheit:

def read_f(self):
 return read_c() * 9/5 + 32

Reading the Light Level
The temperature readings are in units of Celsius or Fahren-
heit. However, the light level is not expressed in any specific
units. The light readings are just the direct analog readings
from pin 2. In effect, we have defined our own units. You can
give them a name if you like, perhaps lightiness?

Measuring light intensity in its standard unit of lux is dif-
ficult with this kind of sensor. But if you have a calibrated lux

CHAPTER 9210

meter, you could carry out your own experiment to compare
Lux and lightiness under different levels of illumination.

The while Loop
The main while loop (at the end of the code if you are following
along in Mu) checks for a press of button A, toggling recording
between True and False whenever the button is pressed. When
recording starts, a single dot is displayed, and we delete the
existing data file with os.remove. The remove command is con-
tained within a try: except: Python structure. This makes
sure that if an error occurs, probably because the data file
isn’t there and can’t be deleted, the error is ignored and doesn’t
crash the program. After we remove the old file, the new file is
opened with a mode of w for writing.

When button A is pressed again, the NO image is displayed
and the file closed.

In the main while loop, there is also an if block that writes
the readings from the light and temperature sensors to the file
as long as recording is True and enough time has elapsed since
the last_sample_time.

while True:
 if button_a.was_pressed():
 recording = not recording
 if recording:
 display.show(".")
 try:
 os.remove(filename)
 except:
 pass
 fs = open(filename, 'w')
 else:
 display.show(Image.NO)
 fs.close()
 now = running_time()
 if now > last_sample_time + sample_period:
 last_sample_time = now
 if recording:
 temp = read_c()
 light = light_pin.read_analog()
 fs.write(str(temp) + "," + str(light))
 fs.write('\n')

Environmental Madness 211

How It Works: Sensors
Thermistors are a special type of resistor (see the lie detector
project in Chapter 8) whose resistance changes as the tem-
perature changes. The type of thermistor used in the Monk
Makes Sensor for micro:bit is an NTC (negative temperature
coefficient). The negative part means that when the tempera-
ture increases, the resistance decreases. We use the resistance
to measure the temperature.

Our thermistor sensor measures temperature as electri-
cal resistance. However, a micro:bit cannot measure resistance
directly. Instead, resistance must first be converted into a volt-
age, and this can then be read by the micro:bit pin that’s acting
as an analog input. To do this, we need to use a voltage divider as
we did in the lie detector project of Chapter 8. However, this time
a thermistor, rather than someone’s skin, will provide the vari-
able resistance (Figure 9-5). Note that the Monk Makes Sensor
for micro:bit board has the 100kΩ resistor built in.

100kΩ

Thermistor

Micro:bit

GND

3V

Pin 1

Figure 9-5: Schematic diagram for using a thermistor
to measure temperature

A thermistor’s resistance does not change every time there
is a difference of some number of ohms, indicating a change of
one degree. As you saw in the code earlier, the formula for cal-
culating a thermistor’s resistance is complicated, involving the
use of logarithms.

CHAPTER 9212

When you buy a thermistor, it will specify two parameters:

XX The resistance of the thermistor at 25 degrees C (called r0
in our code and equal to 100kΩ for the sensor board)

XX A constant called beta, or sometimes just B, that is differ-
ent for different thermistors (In our code, this is called
b. For the thermistor on the sensor board, b is 4,250. The
value of beta will always be specified on the datasheet for
the thermistor.)

You can see how the calculation is made in the code. If
you want to know more about this formula, search online for
“Steinhart-Hart equation.”

Because the voltage at pin 1 depends on the ratio of the
resistance of the thermistor to the fixed resistor, it is indepen-
dent of the supply voltage. This is just as well, because the 3V
connector of the micro:bit can be anything from 3.3V down to
about 2V, depending how you are powering the micro:bit and
how fresh the batteries are. This is why you will see the com-
ment in the read_c function explaining that the variable v33
(3.3V) has no effect. In fact, it cancels out in the math. It is
included only to make the math a bit easier to follow.

Project: Automatic Plant
Waterer
Difficulty: Hard

Ever busy with conferences that take them away from the Secret
Lab, the Mad Scientist has devised this automatic plant waterer.
The project monitors the resistance of the soil to determine how
wet it is. If the soil gets too dry, it turns on a water pump. Press-
ing button A gives a readout of the soil dryness, and pressing
button B acts as a test, running the pump for 10 seconds.

Environmental Madness 213

Figure 9-6: The automatic plant waterer project

What You’ll Need
For this project, you’ll need the following items. See the appen-
dix for more information on where to find these.

Micro:bit

Relay board for micro:bit  To switch the pump on and off
(You could also use a motor controller such as the Kitroniks
board that we used in the rover project of Chapter 6.)
12V aquarium metering pump  These pumps are slow
but reliable.
Tubing and connectors  To transfer the water from
the reservoir to the plant pot
Large plastic bottle  To serve as a water reservoir for
the plant
12V power supply for the pump  12V at 1 amp or more

CHAPTER 9214

USB power supply for the micro:bit or a Monk
Makes Power for micro:bit and AC adapter  This is
a long-term project, so you don’t really want to be run-
ning it from batteries. See the appendix for long-term
micro:bit power options.
1kΩ resistor 
Female DC barrel jack to screw terminal
adapter  To connect the relay and battery to the pump’s
power supply
7 × Alligator clip cables  To connect the nails to the
micro:bit
Fold-back binder clips  To keep the watering tube in place
2 × 5-inch nails  To be used as electrodes in the plant pot
(Note that 6-inch nails also work just fine. Galvanized (zinc-
coated) nails are best because they don’t rust.)
Potted plant 

The pump you need is a peristaltic pump, sometimes called
a dosing pump. You can find one on eBay for a few dollars. These
pumps usually come with short inlet and outlet tubes that you’ll
need to extend so they can reach from the water reservoir to
the pot. They are generally 4 mm in diameter, a common size
for garden irrigation systems. You can find such tubing and

Environmental Madness 215

connectors at eBay, a hardware store, a tropical fish store, or a
garden center.

You’ll need longer alligator clip cables to connect the micro:bit
to the nails. A good size would be about 1 foot (30 cm).

The water reservoir can be anything that will contain a rea-
sonable volume of water (an old milk container would do fine).

Construction
You’ll need to take extra care when building this project, as
it has both an electronic and mechanical component. What’s
more, it pumps water around, so if you don’t connect the pipes
correctly, you could cause quite a mess in your Secret Lab!

Figure 9-7 shows how the electronics are connected to give
you an idea of what you are aiming for as you follow the step-
by-step instructions.

+
-

Pump

Resistor

Barrel jack adapter

Figure 9-7: Wiring for the automatic plant waterer project

CHAPTER 9216

1.	 Open https://github.com/simonmonk/mbms/ and click the
link for Plant Waterer. Click Download and then copy
the hex file onto your micro:bit. If you get stuck on this,
head back to Chapter 1, where the process of transfer-
ring programs to your micro:bit is explained in full. The
Python version of the code is in ch_09_Plant_Waterer.py.

2.	 Wrap the 1kΩ resistor’s wires around pins 1 and 2 of the
micro:bit.

3.	 Using Figure 9-7 as a reference, wire up the alligator clips
to the micro:bit, relay board, barrel jack, and pump. Don’t
attach the yellow and green cables to the nails or connect
the tubes to the pump just yet. To get the alligator clips
to attach to the screw terminal ends of the DC barrel jack
adapter, use a screwdriver to fully open the screw terminals.
If your alligator clip jaws are too big to fit into the screw ter-
minal holes, you can fit straightened-out paper clips into the
screw terminals and then clip the alligator clips onto those.

4.	 Plug the 12V power adapter into the barrel jack adapter
and then press button B on your micro:bit. You should
hear the pump run for 10 seconds and then stop. If it
doesn’t do this, double-check your wiring.

5.	 Push the nails into the soil of the plant pots spaced about
3 or 4 inches (8 to 10 cm) apart. Leave enough of the nail
above the soil that you can attach the green and yellow
alligator clips, as shown in Figure 9-8.

Figure 9-8: Positioning the nails in the soil

https://github.com/simonmonk/mbms/

Environmental Madness 217

6.	 Now, press button A on your micro:bit, and a number
should scroll across the screen. This is a measure of the
dryness of the soil. The drier the soil, the higher the num-
ber. Try adding a little water to the pot, wait for a few sec-
onds, and then press button A again. You should see the
number decrease. Don’t make the soil too wet, though, as
it will take ages to dry out again and you won’t get to see
the plant waterer in action.

You now need to give the plant the right amount of
water. You may need to consult someone with a green
thumb who knows about your particular plant. Once
you’ve found out how moist your plant’s soil should be,
keep adding small doses of water until the soil is damp
enough. Then press button A and make a note of the
number. This is your target dryness for the automatic
plant waterer.

7.	 We’re now ready for the wet part of this project. Start
by measuring out suitable lengths of tubing from the
pump. You want enough tubing that you can put one
length through the top of the reservoir bottle and have
it reach the bottom and the other will reach from the
pump into the plant pot. Before attaching the tubing,
you need to find out which nozzle of the pump is the
inlet and which is the outlet. To do this, press button B
and put a finger over each of the pump’s tubes. You will
feel the inlet pump sucking at your fingertip. Make a
note of which tube is which.

Use the tube connectors to attach these lengths of tub-
ing to the pump’s short tubes.

8.	 Clip the binder clips onto the side of the pot and push
the tubing through the handles of the clip, as shown in
Figure 9-9.

CHAPTER 9218

Figure 9-9: Securing the tube to the plant’s pot

9.	 Fill up the reservoir bottle and push the extended inlet
tube into the bottle, down to the bottom.

10.	 Test the pump by pressing button B a couple of times. If
the water finds its way to the pot without any dripping or
leakage, the waterer is almost ready to go. If not, find and
seal the leaks by adjusting the connections.

11.	 The final step before you can let your plant waterer do
its mundane work, leaving you free for more adventur-
ous tasks, is to adjust the value of dry_threshold. Set
dry_threshold to the value you recorded in step 6 and
then flash the program onto your micro:bit again.

Code
The code for this project is quite complex. As well as monitor-
ing the soil’s moisture content, it also has to handle button
presses and make sure that the pump doesn’t get too carried
away and flood the lab.

Blocks Code
Here is the Blocks code for the project.

Environmental Madness 219

CHAPTER 9220

In the on start block, we define three variables:

dry_threshold  We put our value from step 6 here. If the
plant gets dryer than this value, it will be watered.
on_time_ms  This is the amount of time (in milliseconds)
that the pump will run when watering. Keeping this
value small (say 10 seconds) will keep the plant from be-
ing overwatered. It will also prevent accidents that might
result in minor flooding!
check_period_ms  The water needs a little time to spread
throughout the pot and evenly wet the soil. This variable
sets the delay between each dryness check. By default,
it’s set to 3,600,000 (1 hour in milliseconds).

If we have an on_time_ms value of 10, the maximum water-
ing time the plant can receive in one day is 24 × 10 seconds or
4 minutes. With this kind of pump, it will receive about a pint
(500 mL) of water. That’s quite a lot, but if you have a really
big pot, you may need to decrease check_period_ms or increase
on_time_ms to allow the plant to get even more water. We’ll
discuss this further in “Things to Try” on page 222.

Besides these three variables, we have two functions,
check_dryness and water_the_plant. The check_dryness function
updates the dryness variable with a new soil reading from
pin 2. Notice that this function also turns on pin 1, but just
while the reading is being taken. We’ll explain why in “How It
Works: Measuring Soil Dampness” on page 222.

The water_the_plant function turns on pin 0 to activate the
relay, turns on the pump for the time specified in on_time_ms,
and displays the down arrow on the micro:bit to indicate that
watering is in progress (a bit like it’s raining).

With the forever loop, we first check whether sufficient
time has elapsed since the last check (by default 1 hour). If
enough time has passed, the loop calls check_dryness and com-
pares this reading to the dry_threshold. If the pot is too dry,
water_the_plant is called.

Now that the check is complete, the dont_water_until variable
is set to the current time plus the check_period_ms to schedule
the next check. The dryness is then shown on the display using
the plot bar graph of block. The higher the level of LEDs on the

Environmental Madness 221

display, the drier the soil is and the closer it is to being given
more water.

Then we have the code that checks whether button A is
pressed and reacts appropriately. This code calls check_dryness
and then displays it before showing the bar graph again. The
handler for button B calls water_the_plant and then displays
the dryness level.

MicroPython Code
Here is the MicroPython version of the code:

from microbit import *

dryness = 0
dry_threshold = 500
on_time_ms = 10000
check_period_ms = 3600000
dont_check_until = 0

def water_the_plant():
 pin0.write_digital(1)
 display.show(Image.ARROW_S)
 sleep(on_time_ms)
 pin0.write_digital(0)

def check_dryness():
 global dryness
 pin1.write_digital(1)
 dryness = pin2.read_analog()
 pin1.write_digital(1)

def bargraph(a):
 display.clear()
 for y in range(0, 5):
 if a > y:
 for x in range(0, 5):
 display.set_pixel(x, 4-y, 9)

while True:
 if button_a.was_pressed():
 check_dryness()
 display.scroll(str(dryness))
 bargraph(dryness / 200)

CHAPTER 9222

 if button_b.was_pressed():
 water_the_plant()
 check_dryness()
 bargraph(dryness / 200)
 if running_time() > dont_check_until:
 check_dryness()
 if dryness > dry_threshold:
 water_the_plant()
 dont_check_until = running_time() + check_period_ms
 bargraph(dryness / 200)

Because MicroPython has no equivalent of the plot bar
graph of block, we use the bargraph function from the Shout-o-
meter in Chapter 2 to display the dryness level.

Things to Try
Because the plant waterer keeps the moisture level of the
plant more or less constant, you can measure the amount of
water the plant is using by seeing how much water has left the
reservoir.

Use a measuring cup when you refill the reservoir bottle
and log how much water you need to fill it back up. Once you
know how much water your plant typically needs per day,
you can work out how long your reservoir should last before it
needs a refill. This will be very important if you want to keep
your plant alive when you go on vacation.

How It Works: Measuring Soil Dampness
Impure water (such as water in soil) has a much lower
electrical resistance than air. In other words, the dryer the
soil, the higher its electrical resistance, and the more water
in the soil, the lower its resistance. By measuring the resis-
tance between the two nails, we can measure the dryness of
the soil.

If you look back at Figure 9-7, you can see that there is a
resistor between pins 1 and 2. To make it easier to see what is
going on, another way of visualizing the schematic is shown in
Figure 9-10.

Environmental Madness 223

Soil

1kΩ

Micro:bit

GND

Pin 1

Pin 2

Figure 9-10: Schematic for measuring soil resistance

Notice that the diagram in Figure 9-10 is almost identical to
the one in Figure 8-4 on page 198, where we were measuring
skin resistance (rather than soil resistance) in the lie detector
project. The one big difference is that rather than being con-
nected permanently to 3V, the top of the fixed 1kΩ resistor is
connected to pin 1. When we take a measurement of the soil
dryness, we first set pin 1 high (to 3V) to take the reading and
then set the pin back to 0V.

The reason for using Pin 1 instead of the 3V connection is
that we want to allow electricity to flow through the soil only
intermittently. If the resistor were attached to 3V, an electric
current would always be flowing through the soil, messing up
the readings and speeding up corrosion of the nails. This pro-
cess is known as electrolysis. By only turning on pin 1 for the
brief time that we take a reading, we avoid this problem.

Summary
In this chapter, we explored how to measure temperature,
created a temperature and light level data logger, and created
an automatic plant waterer. In the next chapter, we’ll see how
the Mad Scientist uses the micro:bit’s built-in radio library.

10
RADIO ACTIVITY

he Mad Scientist has made a friend. After
hitting it off at a Mad Science Conference,
the two decided they wanted to keep

talking—through micro:bit, of course.
The micro:bit has a built-in radio transmitter and
receiver, together known as a transceiver, that can
communicate with Bluetooth devices. We saw this
in action in the roving robot project in Chapter 6.

CHAPTER 10226

This radio transceiver can also be used to talk to other
micro:bits using a simple message-sending and receiving pro-
tocol specific to the micro:bit. In this chapter, we’ll look at
micro:bit-to-micro:bit communication, so you’ll need either two
of your own micro:bits or a friend with a micro:bit.

Experiment 12: Finding the
Radio Range
Difficulty: Easy

The Mad Scientist and a friend want to know how far apart
they can be before their micro:bit communicators stop working.

What You’ll Need
You’ll need a pair of micro:bits, each equipped with a bat-
tery pack. You’ll also need a friend to talk to and a field
or other open space where you can move away from each
other.

Radio Activity 227

Construction
1.	 Go to https://github.com/simonmonk/mbms/ and click the

link for Experiment 12: Radio Range. Copy the hex file
onto both micro:bits. (Chapter 1 explains the full process
of getting programs onto your micro:bit if you get stuck).
If you want to run the MicroPython version of this experi-
ment, that file is Experiment_12.py.

2.	 Equip both micro:bits with battery power—you’re probably
used to doing this by now.

Before you venture outdoors, test that both micro:bits
are ready to go by pressing button A on one of the devices.
An up arrow should appear on that micro:bit, and a check
mark should appear on the other micro:bit. Repeat this test
by pressing button A on the other micro:bit (Figure 10-1).

Figure 10-1: Testing the micro:bits

3.	 Go to a place where you and your friend have plenty of
room to move away from each other. Stand about a yard
(or meter) apart, facing one another. You should have one
micro:bit and your friend the other.

https://github.com/simonmonk/mbms/

CHAPTER 10228

4.	 Now either you or your friend presses button A on their
micro:bit to transmit the signal. Then wave to let the other
person know the signal was sent (in case they don’t receive
it). When their device picks up the signal, they should wave
back. Assuming the signal was successfully transmitted,
take a few steps away from each other and repeat the test.

5.	 At some point, the message won’t be received! The sender
should press the button and wave one more time. If the
message still isn’t received, you both know to move one
step closer.

6.	 Once you’ve determined the radio’s range, the sender uses
a prearranged signal to tell the receiver to walk toward
them, counting the number of steps that they take.

7.	 Measure the length of a step taken by the receiver
and multiply that by the number of steps they took.
The resulting value is the line-of-sight range of the
micro:bit’s radio. Tip: To get a reasonably accurate
stride length, have the person walk five steps, use a
long tape measure to measure the total distance trav-
eled, and divide that distance by 5.

The Mad Scientist tested the range of two micro:bits
and found it to be 192 strides. Five strides covered 12 feet
(3.65 meters), meaning that each stride was 2.4 feet. The
range was therefore 192 × 2.4 or approximately 460 feet
(140 meters).

A range of over 1,100 feet (350 meters) has been reported
by others carrying out this experiment. Note that the range
will be considerably less if either your body or your friend’s is
between the micro:bits.

Code
The code for the range test is fairly simple, whether you use
Blocks or MicroPython.

Radio Activity 229

Blocks Code
Here is the Blocks code for the project.

You can control the amount of power used by the radio.
The on start block uses the radio set transmit power block to
set the power to 7 (maximum)—more power means greater
range. The set radio group block assigns a group for the radio

CHAPTER 10230

to use. In this case, we use group 1, which means all the
micro:bits set to radio group 1 will receive the transmissions.
So, if you plan to carry out this experiment with multiple pairs
of micro:bits at the same time, then each pair of experimenters
should pick a different number between 0 and 255 and set the
radio group to that number. This way, the different pairs won’t
interfere with each other.

We use the on button A pressed block with the radio send
block to transmit a simple message of test. This will flash the
North arrow icon to show that the message has been sent.

We handle incoming messages with an on received block,
specifying the name of the variable into which any incoming
message should be put. In this case, whenever the micro:bit’s
radio receives a message, it puts the message into the variable
receivedString. If this message is test, then the check mark
icon is displayed for a moment on the screen.

MicroPython Code
Here is the MicroPython version of the code. Note that the way
messages are sent in MicroPython is slightly different from
how they’re sent in the Blocks code, so the pair of micro:bits
used in this experiment should both be programmed either in
Blocks or in MicroPython.

from microbit import *
import radio

radio.on()
radio.config(power=7, group=1)

while True:
 if button_a.was_pressed():
 radio.send("test")
 display.show(Image.ARROW_N)
 sleep(1000)
 display.clear()
 message = radio.receive()
 if message == 'test':
 display.show(Image.YES)
 sleep(1000)
 display.clear()

Radio Activity 231

To set the radio’s power and radio group in MicroPython,
we need to use the radio.config method. This method also
allows you to control a number of other options. You can read
about these at https://bbcmicrobitmicropython.readthedocs.io/
en/latest/radio.html.

The Blocks version of the code is contained entirely in han-
dlers. In MicroPython, we don’t have handlers, so we have to
continually check for a button press or incoming message. We
do this by having a set of if statements in a while True loop
that is always running.

First, we check whether button A has been pressed since
the previous check. If it has been, we send the message test
and show the North arrow.

To check whether we’ve received a message, we repeat-
edly call message.receive. When the radio receives messages,
it puts them in a queue. If there is no message waiting, then
message.receive returns None. However, if there is one or more
messages, then message.receive returns the oldest message and
removes that message from the queue.

We only care whether the message is test, so we check this
condition. If the message is test, we have the micro:bit display
the YES icon for a second.

How It Works: Radio Signals
When outdoors, the range of the micro:bits’ radios is likely
to be much greater than when you’re indoors, where walls
between the micro:bits will impede the signal.

The system of sending messages between devices is called
packet radio because small packets of data are being sent. In
this project’s code, these are text commands.

Project: Wireless Doorbell
Difficulty: Medium

Distracted by experiments and insubordinate underlings, the
Mad Scientist often misses packages when they’re delivered.
To remedy this, they’ve decided to build a speaker in the lab
that plays when the doorbell is rung.

https://bbcmicrobitmicropython.readthedocs.io/en/latest/radio.html
https://bbcmicrobitmicropython.readthedocs.io/en/latest/radio.html

CHAPTER 10232

We’ll build on the doorbell project from way back in Chap-
ter 2. In this version of the project, we’ll use two micro:bits:
one connected to a speaker, responsible for playing a tune, and
a second one that acts as the doorbell button (Figure 10-2).
When one of the buttons on the second micro:bit is pressed, it
sends a radio message to the sound-making micro:bit, telling it
to play a tune. Because the micro:bit radios have a pretty good
range, your sound-playing micro:bit can be some distance from
your door and, thus, closer to you.

Figure 10-2: The wireless doorbell project

What You’ll Need
For this project, you’ll need the following items:

2 × Micro:bit  One that acts as a doorbell button and
another that plays a tune
3 × Alligator clip cables  To connect the micro:bit to
the speaker
2 × USB power adapters or 3V battery packs with
power switch  To power the micro:bits

Radio Activity 233

Speaker  To play the doorbell tune, I recommend the
Monk Makes Speaker for micro:bit.
Blu-Tak adhesive putty or self-adhesive pads 
To attach one of the micro:bits to the door frame

Construction
1.	 Go to https://github.com/simonmonk/mbms/ and click the

link for Wireless Doorbell. Copy the hex file onto both
micro:bits. Chapter 1 explains the full process of getting
programs onto your micro:bit if you need a refresher. If you
want to run the MicroPython version of this experiment,
that file is ch_10_Wireless_Doorbell.py.

2.	 Connect a speaker to one of the micro:bits. You can use
the speaker you used in the musical doorbell project from
Chapter 2 (see the instructions for this project if you get
stuck).

3.	 Test the speaker by pressing button A on the doorbell
micro:bit. The micro:bit attached to the speaker should
immediately start playing the tune “The Entertainer.”
When it’s finished, try pressing button B, and the
“Funeral March” should play.

4.	 Use the Blu-Tak adhesive putty or pads to attach the
speakerless micro:bit to the outside of your door.

Code
Both versions of the code rely on sending a message over
the radio of either db1 or db2, depending on which button is
pressed. The receiving micro:bit then plays one of two tunes,
depending on which message it receives.

As with Experiment 12, you cannot mix and match the
MicroPython and Blocks versions of the code, so decide to use
one or the other.

https://github.com/simonmonk/mbms/

CHAPTER 10234

Blocks Code
Here is the Blocks code for the project.

You’ll notice that the code here is similar to that in Experi-
ment 12. If Button A is pressed, then the string db1 (doorbell 1)
is sent and a north arrow displayed to indicate that the mes-
sage has been sent. The handler for when button B is pressed
sends the message db2.

The receiving code checks whether the received message is
db1 or db2 and plays the appropriate tune.

MicroPython Code
Here is MicroPython version of the code:

from microbit import *
import radio, music

Radio Activity 235

radio.on()
radio.config(power=7, group=1)

def send_message(message):
 radio.send(message)
 display.show(Image.ARROW_N)
 sleep(1000)
 display.clear()

while True:
 if button_a.was_pressed():
 send_message("db1")
 if button_b.was_pressed():
 send_message("db2")
 message = radio.receive()
 if message == 'db1':
 music.play(music.ENTERTAINER)
 elif message == 'db2':
 music.play(music.FUNERAL)

In this version of the code, we’ve defined the function
send_message, which sends a message using the radio and
displays the north arrow for a second.

As with the code in Experiment 12, we use a while True loop
to continuously check for button presses and received messages.

Things to Try
Try swapping in different tunes. Or you might try changing the
code so that when db1 or db2 is received, the tune is played more
than once. Then the Mad Scientist will be more likely to hear it!

How It Works: Sending and Receiving
You might be wondering why we use the same code for both
the sender and the receiver. If we press button A on the
micro:bit with a speaker attached, shouldn’t it receive its
own message and play a tune? It turns out that while the
micro:bit’s radio is busy transmitting, it cannot receive any-
thing. Also, having just one program avoids confusion about
which program goes on which micro:bit.

CHAPTER 10236

Project: micro:bit-
Controlled Rover
Difficulty: Hard

No secret lab would be complete without a robot that can
give instructions. Back in Chapter 6, we made a robot rover
that could be controlled over Bluetooth using your phone. This
project uses the same basic rover, but instead of controlling
the rover with your phone and Bluetooth, you’ll use a second
micro:bit and the micro:bit’s own way of communicating wire-
lessly. You’ll steer the rover by tilting the controlling micro:bit
left, right, forward, or backward. Figure 10-3 shows the project,
and you can see it in action at https://youtu.be/Qqr0fknoPQ4/.

Figure 10-3: A micro:bit-controlled rover

What You’ll Need
For this project, you’ll need the following items:

2 × Micro:bit

Kitronik Motor Driver Board for micro:bit (V2)   ​
To control the forward and backward motors
Low-cost robot chassis kit  Includes two gear motors
and a 4 × AA battery box

https://youtu.be/Qqr0fknoPQ4/

Radio Activity 237

4 × AA batteries

AAA battery pack for micro:bit  To power the
micro:bit being used as the remote control
Screwdrivers  Suitable for both the nuts and bolts on
the chassis and the screw terminals on the motor control-
ler board
Soldering equipment  To attach wires to the
gearmotors
Blu-Tack adhesive putty  To attach the motor control
board and micro:bit to the chassis

Construction
Use the rover you built in Chapter 6 or, if you haven’t built
the rover yet, go back and follow construction steps 1 to 4
from that project. We’ll be using different software, however,
so once the chassis is built, follow the instructions here. Don’t

CHAPTER 10238

fit the batteries yet, or your rover might accidentally drive
itself off your table!

1.	 First, we’ll install the program for the rover part of the
project. Go to https://github.com/simonmonk/mbms/
and click the link for Rover. Copy the hex file onto
the micro:bit attached to the rover chassis. Head back
to Chapter 1 if you need more detailed instructions on
how to get programs onto your micro:bit.

2.	 Now install the program for the micro:bit being used as
the remote control. Go to the Github page, click the link
for Rover Controller, click Download, and copy the hex
file onto the micro:bit.

3.	 Before you let your robot loose in the lab, it’s worth test-
ing out your project without the wheels touching the
ground. You may need to swap over some of the motor
wires so the rover follows the commands you send it cor-
rectly. Insert the batteries and then flip the rover on its
back so you can see what the wheels are doing, without
any danger of its driving away.

Tip the controlling micro:bit to the left, and you
should see the same left arrow appear on the displays
of both micro:bits. At the same time, both wheels should
turn in the same direction. As you look from above, the
right wheel should be turning faster than the left. If one
of the wheels is turning in the wrong direction, swap over
the red and black wires at the motor controller screw ter-
minal for that motor.

4.	 Try driving the rover around. Remember that if the
vehicle gets stuck, you can stop it by putting the
controller micro:bit into a horizontal position.

Code
The software uses two programs, one for the controller and
another for the rover micro:bit. You can only use Blocks code
for this project

Controller Code
Here is the code for the remote controller micro:bit.

https://github.com/simonmonk/mbms/

Radio Activity 239

You’ll notice that in the on start block, we use a radio set
group block. This block makes the micro:bit listen only to mes-
sages from other micro:bits in the same group—here group 1.
This prevents your micro:bit from picking up stray messages
from other scientists in the area who might be using the same
radio group and behaving unpredictably as a result. If you
want to add other micro:bit pairs, change the number in the
radio set group block to a different value for each micro:bit
pair. Then each rover will be paired to a single controller. You
can pick any number between 0 and 255.

The rest of the program consists of on gesture blocks that
handle the possible movement commands for the rover. For
example, below the on start block, you have the on tilt left
block, which transmits the string L and displays an East arrow
when the micro:bit is tilted. Here’s the full list of commands
that can be sent:

S  Stop
L  Left
R  Right
B  Backward
F  Forward

CHAPTER 10240

Rover Code
Here is the receiving code for these commands.

Radio Activity 241

Similar to the controller code, we have an on start block
that sets the radio group to 1. Remember that if you decide
to change the radio group code, you have to do it on both
micro:bits!

The rest of the code is contained in an on radio received
block. Inside the block is a series of if statements that test
the incoming command letter and perform the action that
letter signals. If the L command is received, for example, a
left arrow is shown, and then motor 1 is set to go forward
at 50 percent and motor 2 to go forward at 100 percent (full
speed). This will make motor 2 (the right motor) go faster
than the left motor, making the rover turn in an arc toward
the left.

Things to Try
Try adding extra commands to the pair of programs. You’re
getting a bit short on gestures to use, but you could add a D (for
dance) command that tells the rover to do a little sequence of
moves when the controller micro:bit is shaken.

You could also add a C (for circle) command that instructs
the rover to spin on the spot by setting one motor forward at
full speed and the other in reverse at full speed. This could be
triggered by pressing button A or B.

How It Works: Motor Driver Blocks
You may have noticed a new category of blocks that appeared
in your Blocks code when you opened the code for the rover:
Motor Driver blocks. These blocks were created by Kitronik,
the makers of the motor controller used in the project.

If you’re starting a new project and want to use these
blocks, you first need to add them to your project. To do this,
click Extensions at the bottom of the list of block categories.
This will open a dialog that looks something like Figure 10-4.
If the package isn’t listed after you search for it, refresh the
browser page and try searching again.

CHAPTER 10242

Figure 10-4: Managing extensions in the Blocks editor

In the field at the top labeled Search or enter project
URL . . . enter the following: https://github.com/KitronikLtd/
pxt-kitronik-motor-driver/. To make sure you get the URL
right, enter it into another browser tab first. When you’ve
found the page, copy and paste the URL from your browser’s
address bar to the field.

Once you’ve entered the URL, you should see
kitronik-motor-driver, as shown in Figure 10-5. Click
it, and you’ll find that your Blocks editor now has a
new category containing the motor control blocks that
you can drag into your code.

Figure 10-5: Managing extensions in the Blocks editor

Once the package has been added to your project, it will be
stored in the project forever. You won’t need to install it again,
unless you start a new project and want to use the package
there. Because the package is stored in the project, you can
easily share the project with someone else, with no need for
them to install the package.

https://github.com/KitronikLtd/pxt-kitronik-motor-driver/
https://github.com/KitronikLtd/pxt-kitronik-motor-driver/

Radio Activity 243

Summary
In this chapter, you tested the range of the micro:bit’s built-in
radio, built a better doorbell, and made a remote-controlled
rover. With its good range, the radio lets micro:bits commu-
nicate with each other easily, and it lends itself to all sorts of
communication projects.

This is the final chapter in this book. The appendix that
follows will give you some information about the parts you
need to build the projects in this book and where you might
obtain them.

The micro:bit community is a vibrant and active one. You’ll
find lots of interesting projects to make and experiments to
carry out involving your micro:bit. Take a look at https://
microbit.org/ideas/ if you want some inspiration for what
you, as a Mad Scientist, might do next with your micro:bit.

https://microbit.org/ideas/
https://microbit.org/ideas/

Appendix:
GET THE PARTS

he projects in this book use a lot of
parts, and unfortunately, there is no
one supplier that has all of them. If you

find a project you want to build or an
experiment you want to try, carefully look through
the “What You’ll Need” section and make a note
of the things you don’t have. This will be your
shopping list.

APPENDIX 246

The tables in this appendix will help you find the items on
your list. If you’re struggling to find something, do an internet
search on the item’s name or description, and you’ll usually
find somewhere you can buy it.

The Monk Makes Electronics Starter Kit for micro:bit
(https://monkmakes.com/mb_kit/) will provide you with alli-
gator clip cables as well as the Monk Makes Speaker and
Sensor boards used in several of the projects in this book.

Useful Tools
Most of the projects and experiments in this book don’t require
any tools beyond your hands. However, there are a few tools
that every Mad Scientist should have available. You probably
already have many of these in your home.

Item Description Some Sources

Scissors

Adhesive tape

Screwdrivers Flat head and Phillips
(cross head)

Drill (for Chapter 6)

Soldering kit (for Chapter 6) A low-cost kit is fine. You
don’t need anything fancy.

Ladyada’s Electronics
Toolkit: https://www

.adafruit.com/product/136.
For lower-cost alternatives,
search Amazon and eBay
for “soldering kit.”

Craft knife To cut shapes out of
cardboard

Craft/hobby store

Pliers Medium-sized general-
purpose pliers are useful
for bending wire.

Hardware store

Ruler (inches and cm) Office supply store

Blu-Tack/Adhesive putty This is great for sticking
micro:bits to things in a
nonpermanent manner.

Office supply store

https://www.adafruit.com/product/136
https://www.adafruit.com/product/136

Get the Parts 247

Only the roving robot project in Chapter 6 requires any
soldering. If you don’t plan to make this project, you won’t
need a soldering kit.

Also in Chapter 6, the animatronic head project requires you
to use a drill to make holes in ping-pong balls. Otherwise, you
don’t need this piece of equipment.

Common Parts
Here are some of the parts that are used in many of the projects
and experiments in this book. A number of micro:bit “getting
started” bundles include some or all of these items, and some
of these are listed here as well.

Item Description Some Sources

USB to micro USB data
cable

To power and program
your micro:bit

These cables are often used to
charge cell phones, so you may
have one lying around. If not,
they are readily available from
stores that carry cell phones
or computers. They are also
included in the micro:bit Go
bundle and Pimoroni micro:bit
accessories pack.

Alligator clip cables To connect the micro:bit
to various things

https://www.adafruit.com/

product/1592

https://shop.pimoroni.com/

products/crocodile-leads-set

-of-10/

https://www.kitronik.co.uk/

2407-crocodile-leads-pack-of-10

.html

Alligator clip to male
header cables

To connect the micro:bit
to a servomotor

https://www.adafruit.com/

product/3255

https://thepihut.com/products/

adafruit-small-alligator-clip

-to-male-jumper-wire-bundle-6

-pieces-ada3448/

https://shop.pimoroni.com/products/crocodile-leads-set-of-10/
https://shop.pimoroni.com/products/crocodile-leads-set-of-10/
https://shop.pimoroni.com/products/crocodile-leads-set-of-10/
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://thepihut.com/products/adafruit-small-alligator-clip-to-male-jumper-wire-bundle-6-pieces-ada3448/
https://thepihut.com/products/adafruit-small-alligator-clip-to-male-jumper-wire-bundle-6-pieces-ada3448/
https://thepihut.com/products/adafruit-small-alligator-clip-to-male-jumper-wire-bundle-6-pieces-ada3448/
https://thepihut.com/products/adafruit-small-alligator-clip-to-male-jumper-wire-bundle-6-pieces-ada3448/
https://www.adafruit.com/product/1592
https://www.adafruit.com/product/3255

APPENDIX 248

Here are some kits that contain some or all of these items.

Item Description Some Sources

Pimoroni micro:bit
accessories kit

Includes a USB cable and
battery box

https://shop.pimoroni

.com/products/micro-bit

-accessories-kit/

BBC micro:bit Go bundle Includes a micro:bit, USB
cable, and battery box

https://www.adafruit.com/

product/3362

Monk Makes Electronics
Starter Kit for micro:bit

Includes alligator clip
cables and a number of
accessory boards

https://www.eduporium

.com/store/monk-makes

-electronics-starter-kit-for

-micro-bit.html

https://thepihut.com/

products/electronics-starter

-kit-for-micro-bit/

Item Description Some Sources

2 × AAA battery pack Holder for AAA
batteries

Available in the micro:bit Go
bundle: https://www.adafruit.com/

microbit

https://shop.pimoroni.com/

products/battery-holder-2-x-aaa

-with-switch/

You can also find these on eBay.

Kitronik MI:power
board

Coin-cell power for your
micro:bit

https://www.kitronik.co.uk/5610

-mipower-board-for-the-bbc

-microbit.html

Monk Makes Power for
micro:bit

Powers the micro:bit
from a 4.5V to 12V DC
source, which is useful
for long-term powering
of the micro:bit

https://www.kitronik.co.uk/46144

-monk-makes-power-board-for

-microbit.html

https://shop.pimoroni.com/

products/power-for-micro-bit/

https://www.robotshop.com/en/

monk-makes-power-module

-microbit.html

Powering Your Micro:bit
Here are some of the options available for powering your micro:bit.

https://shop.pimoroni.com/products/micro-bit-accessories-kit/
https://www.adafruit.com/product/3362
https://www.eduporium.com/store/monk-makes-electronics-starter-kit-for-micro-bit.html
https://thepihut.com/products/electronics-starter-kit-for-micro-bit
https://www.adafruit.com/microbit
https://www.adafruit.com/microbit
https://shop.pimoroni.com/products/battery-holder-2-x-aaa-with-switch/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html
https://www.kitronik.co.uk/46144-monk-makes-power-board-for-microbit.html
https://www.robotshop.com/en/monk-makes-power-module-microbit.html
https://shop.pimoroni.com/products/power-for-micro-bit/

Get the Parts 249

Item Description Some Sources

ElecFreaks micro:bit
Power Supply Module

The same concept as
power for micro:bit (Note
that the connecting cable
is not included.)

https://www.elecfreaks.com/estore/

micro-bit-power-supply-module-3

-3v-2a.html

Charger kit for micro:bit Rechargeable battery
and case kit for
micro:bit

https://www.monkmakes.com/

mb_charger/

USB backup battery A useful rechargeable
battery option (not
suitable for high-
current projects)

https://www.adafruit.com/

product/1959

You can also find these at stores
that carry cell phones or computers,
as well as on eBay and Amazon.

Micro:bit Accessories
This book makes ample use of micro:bit accessories, like
speakers and sensors. Here are some options for the
accessories.

Item Description Some Sources

Monk Makes Speaker
for micro:bit

Loudspeaker for sound-
related projects

https://www.eduporium.com/

store/monk-makes-speaker-for

-micro-bit.html

https://shop.pimoroni.com/

products/speaker-for-micro-bit/

https://www.kitronik.co.uk/

46124-powered-speaker-board

-for-microbit.html

Mini.Mu speaker Loudspeaker for sound-
related projects

https://shop.pimoroni.com/

products/mini-mu-speaker/

(continued)

https://www.elecfreaks.com/estore/micro-bit-power-supply-module-3-3v-2a.html
https://www.eduporium.com/store/monk-makes-speaker-for-micro-bit.html
https://shop.pimoroni.com/products/speaker-for-micro-bit/
https://www.kitronik.co.uk/46124-powered-speaker-board-for-microbit.html
https://shop.pimoroni.com/products/mini-mu-speaker/
https://www.monkmakes.com/mb_charger/
https://www.adafruit.com/product/1959

APPENDIX 250

Item Description Some Sources

Monk Makes Sensor
for micro:bit

Sound, temperature, and
light sensor

https://www.eduporium.com/

store/monk-makes-sensor-for

-micro-bit.html

https://www.kitronik.co.uk/

46122-sensor-board-for

-microbit.html

https://shop.pimoroni.com/

products/sensor-for-micro-bit/

Adafruit MEMS
Microphone Breakout

Advanced option for sound
sensing (soldering required)

https://www.adafruit.com/

product/2716

Kitronik Motor Driver
Board for the BBC
micro:bit (V2)

For the robot rover project
in Chapter 6

https://www.kitronik.co.uk/5620

-motor-driver-board-for-the-bbc

-microbit-v2.html

Miscellaneous
As well as the add-on accessories, you’ll need a few other
items.

Item Description Some Sources

Neodymium magnet
(10 mm disc)

A very powerful disc
magnet

You might find these in a
hobby/craft shop, but eBay
is probably your best bet.
Search for “neodymium
magnets.”

3V Servomotor Low-power servomotors
that will operate at 3V

https://www.adafruit.com/

product/169

https://www.kitronik.co.uk/

2565-180-mini-servo.html

12V aquarium metering
pump

Used in the plant waterer
project in Chapter 9

Tropical fish store or
eBay, searching for “12V
aquarium metering pump”

https://www.eduporium.com/store/monk-makes-sensor-for-micro-bit.html
https://www.kitronik.co.uk/46122-sensor-board-for-microbit.html
https://shop.pimoroni.com/products/sensor-for-micro-bit/
https://www.adafruit.com/product/2716
https://www.kitronik.co.uk/5620-motor-driver-board-for-the-bbc-microbit-v2.html
https://www.adafruit.com/product/169
https://www.kitronik.co.uk/2565-180-mini-servo.html

Get the Parts 251

Item Description Some Sources

1kΩ resistor Used in the plant waterer
project in Chapter 9

https://www.sparkfun.com/

products/14492/

https://www.kitronik.co.uk/

c3003-resistor-pack-of-100

.html (version 3003-1k)

Female DC barrel jack to
screw terminal adapter

Used in the plant waterer
project in Chapter 9

https://www.adafruit.com/

product/369

https://shop.pimoroni.com/

products/male-dc-power

-adapter-2-1mm-plug-to

-screw-terminal-block/

12V power supply for the
pump

To power the pump in the
plant waterer project in
Chapter 9 (Pick one with
your country’s type of AC
outlet plug that can supply
12V at 1A)

US: https://www.adafruit

.com/product/798

UK: https://shop.pimoroni

.com/products/power

-supply-12v-1a/

https://www.kitronik.co.uk/c3003-resistor-pack-of-100.html
https://www.kitronik.co.uk/c3003-resistor-pack-of-100.html
https://www.kitronik.co.uk/c3003-resistor-pack-of-100.html
https://shop.pimoroni.com/products/male-dc-power-adapter-2-1mm-plug-to-screw-terminal-block/
https://www.adafruit.com/product/798
https://www.adafruit.com/product/798
https://shop.pimoroni.com/products/power-supply-12v-1a/
https://shop.pimoroni.com/products/power-supply-12v-1a/
https://shop.pimoroni.com/products/power-supply-12v-1a/
https://www.sparkfun.com/products/14492/
https://www.adafruit.com/product/369

Micro:bit for Mad Scientists is set in Century Schoolbook,
Filmotype Candy, Housearama Kingpin, and TheSansMono
Condensed.

RESOURCES
Visit https://www.nostarch.com/microbitformad/ for resources, errata,
and more information.

CODING WITH MINECRAFT
Build Taller, Farm Faster, Mine Deeper,
and Automate the Boring Stuff
by al sweigart

may 2018, 256 pp., $29.95
isbn 978-1-59327-853-3
full color

LEARN ROBOTICS WITH
RASPBERRY PI
Build and Code Your Own Moving,
Sensing, Thinking Robots
by matt timmons-brown

january 2019, 240 pp., $24.95
isbn 978-1-59327-920-2
full color

THE OFFICIAL SCRATCH
CODING CARDS
Creative Coding Activities for Kids
by natalie rusk and the
scratch team

may 2019, 76 cards, $24.95
isbn 978-1-59327-976-9
full color, box set

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com | www.nostarch.com

MORE SMART BOOKS FOR CURIOUS KIDS!

20 EASY RASPBERRY PI
PROJECTS
Toys, Tools, Gadgets, and More!
by rui santos and sara santos

april 2018, 288 pp., $24.95
isbn 978-1-59327-843-4
full color

PYTHON FOR KIDS
A Playful Introduction to Programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

MAKE YOUR OWN
SCRATCH GAMES!
by anna anthropy

july 2019, 192 pp., $17.95
isbn 978-1-59327-936-3
full color

https://www.nostarch.com/microbitformad/

S i m o n M o n k

micro:bit for
mad scientists
micro:bit for

mad scientists
30 Clever Coding and Electronics

Projects for Kids

AGES 10+

SHELVE IN
: COM

PUTERS/ELECTRONICS

$24.95 ($33.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

The BBC micro:bit is a tiny, inexpensive,
and surprisingly powerful computer that
you can use to build cool things and experi-
ment with code.

The 30 simple projects and experiments
in this book will show you how to use the
micro:bit to build a secret science lab—
complete with robots, door alarms, lie detec-
tors, and more—as you learn basic coding
and electronics skills.

Here are just some of the projects you’ll
build:
 A light-controlled guitar you can play just

by waving your hand
 A working lie detector
 A self-watering plant care system
 A two-wheeled robot
 A talking robotic head with moving eyes
 A door alarm made with magnets

Learn to code like a Mad Scientist!

ABOUT THE AUTHOR

Simon Monk writes frequently about
electronics for makers. He is the author
of Raspberry Pi Cookbook, Programming
Arduino, and Hacking Electronics. He is
also the co-author of Practical Electronics
for Inventors and wrote Minecraft Mastery
with his son, Matthew Monk.

Build Your OWN
Secret Laboratory!

Build Your OWN
Secret Laboratory!

30 Coding and
Electronics Projects

30 Coding and
Electronics Projects

Covers
MicroPython and
MakeCode Blocks

M
o

n
k

m
ic

r
o

:b
it

 �f
o

r
 m

a
d

 s
c

ie
n

t
is

t
s

m
ic

r
o

:b
it

 �f
o

r
 m

a
d

 s
c

ie
n

t
is

t
s

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	About This Book
	Experiments
	Projects

	Code and Resources

	Chapter 1: Getting Started
	A Tour of the Micro:bit
	The Top
	The Bottom
	Power and the Micro:bit
	Connecting Electronics with Input/Output Pins
	Built-In Peripherals

	Hardware Essentials
	Programming the Micro:bit
	Connecting your Micro:bit
	Programming with Blocks: Hello World
	Programming with MicroPython: Hello World

	Programming Concepts
	Variables
	Arithmetic
	if Blocks
	Strings
	Arrays and Lists
	Programming Wrap-Up

	Downloading the Code
	Downloading the Blocks Code
	Downloading the MicroPython Code

	Summary

	Chapter 2: Super Sonic
	Connecting a Loudspeaker to a Micro:bit
	The Quiet Method: Headphones
	The Ghetto Blaster Method: Speaker

	Experiment 1: Generating Sounds
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: Frequency and Sound

	Experiment 2: It Speaks!
	What You’ll Need
	Construction
	Code

	Project: Musical Doorbell
	What You’ll Need
	Construction
	Code
	Things to Try

	Project: Shout-O-Meter
	What You’ll Need
	Construction
	Code
	How It Works: Microphone Output

	Summary

	Chapter 3: Luminous Light
	Experiment 3: Sensing Light
	What You’ll Need
	Construction
	Code
	How It Works

	Project: Automatic Night-light
	What You’ll Need
	Construction
	Code

	Project: Light Guitar
	What You’ll Need
	Construction
	Code

	Project: Infinity Mirror
	What You’ll Need
	Construction
	Code
	How It Works

	Summary

	Chapter 4: Magical Magnetism
	Project: Compass
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: The Earth’s Magnetic Field

	Experiment 4: Measuring Magnetic Fields
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: The Strength of Magnets

	Project: Magnetic Door Alarm
	What You’ll Need
	Construction
	Code
	Things to Try

	Summary

	Chapter 5: Amazing Acceleration
	Experiment 5: Gestures
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: Force, Acceleration, and Gravity

	Experiment 6: Real-Time Acceleration Plotting
	What You’ll Need
	Construction
	Code
	How It Works: Calculating Net Acceleration

	Project: Toothbrushing Monitor
	What You’ll Need
	Construction
	Code
	Things to Try

	Experiment 7: Logging Acceleration to a File
	What You’ll Need
	Construction
	Code
	Things to Try

	Project: Acceleration Display
	What You’ll Need
	Construction
	Code

	Summary

	Chapter 6: Mad Movement
	Experiment 8: Making a Servomotor Move
	What You’ll Need
	Construction
	Code
	How It Works: Servomotors and Pulses

	Project: Animatronic Head (Mike the Micro:bit Robot)
	What You’ll Need
	Construction
	Code
	Things to Try

	Project: Robot Rover
	What You’ll Need
	Construction
	How It Works: Motors and the Flow of Electricity

	Summary

	Chapter 7: Time Travel
	Experiment 9: Keeping Time
	What You’ll Need
	Construction
	Code
	How It Works: Keeping Time

	Project: Binary Clock
	How to Read the Binary Clock
	What You’ll Need
	Construction
	Code
	How It Works: Telling the Time in Binary

	Project: Talking Clock
	What You’ll Need
	Construction
	Code
	How It Works: Teaching the Micro:bit to Speak

	Summary

	Chapter 8: Mad Scientist Mind Games
	Experiment 10: How Fast Are Your Nerves?
	What You’ll Need
	Construction
	Testing Your Nervous System
	Code
	Things to Try
	How It Works: Measuring Your Reaction Time

	Project: Lie Detector
	What You’ll Need
	Construction
	Code
	How It Works: Detecting Lies Through Sweat, Voltage, and Resistance

	Summary

	Chapter 9: Environmental Madness
	Experiment 11: Measuring Temperature
	What You’ll Need
	Construction
	Code
	How It Works: Why Does a Processor Heat Up?

	Project: Temperature and Light Logger
	What You’ll Need
	Construction
	Code
	How It Works: Sensors

	Project: Automatic Plant Waterer
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: Measuring Soil Dampness

	Summary

	Chapter 10: Radio Activity
	Experiment 12: Finding the Radio Range
	What You’ll Need
	Construction
	Code
	How It Works: Radio Signals

	Project: Wireless Doorbell
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: Sending and Receiving

	Project: Micro:bit-Controlled Rover
	What You’ll Need
	Construction
	Code
	Things to Try
	How It Works: Motor Driver Blocks

	Summary

	Appendix: Get the Parts
	Useful Tools
	Common Parts
	Powering Your Micro:bit
	Micro:bit Accessories
	Miscellaneous

